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ABSTRACT 

This thesis is composed of two parts. The first part of the thesis focuses on studying 

inversion-based output tracking control and learning control for nonminimum phase 

systems. The second part of the thesis focuses on RF CMOS LNA and mixer design. 

The nonminimum phase property has long been recognized as a major obstacle in 

many control problems. In part one, we introduce a new design procedure for output 

tracking control of nonminimum phase systems. We provide a causal inversion solution 

for general nonlinear systems. By using the scaling property, we present a causal in­

version solution such that the causal state and input trajectories track those obtained 

by stable inversion approach for linear systems. This new controller achieves stable e— 

tracking. In contrast to stable inversion, the causal inversion approach does not require 

precalculation. In contrast to nonlinear regulation, the causal inversion approach avoids 

the numerical intractability of solving nonlinear PDEs. As an example of the appli­

cation, a causal inversion-based controller is designed for tip trajectory tracking of a 

one-link flexible manipulator. Inversion-based adaptive and robust learning algorithms 

are developed for unstable nonminimum phase systems. 

Fast growth of personal communication market puts a high demand on the production 

of low cost and low power transceivers for wireless applications. In part two, we present a 

design of a CMOS low noise amplifier and does its sensitivity analysis which is beneficial 

for making appropriate design trade offs. We also propose a novel low voltage down-

conversion mixer design. As an example, all the circuits have been designed at 5.8 GHz 

and integrated in a TSMC 0.18 jim. CMOS process. These front-end circuit designs can 

be used for low voltage and low power wireless applications. 
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1 INTRODUCTION 

This thesis is composed of two parts. The first part of the thesis focuses on studying 

inversion-based output tracking control and learning control for nonminimum phase 

systems. The second part of the thesis studies RF CMOS LNA and mixer design. 

In part one, we introduce a new design procedure for output tracking control of 

nonminimum phase systems. This new controller achieves stable e—tracking. In contrast 

to stable inversion, the causal inversion approach does not require precalculation. In 

contrast to nonlinear regulation, the causal inversion approach avoids the numerical 

intractability of solving nonlinear PDEs. As an example of the application, a causal 

inversion-based controller is designed for tip trajectory tracking of a one-link flexible 

manipulator. Inversion-based adaptive and robust learning algorithms are developed 

for unstable nonminimum phase systems. This research is useful for applications with 

nonminimum phase property. 

In part two, we present a design of a CMOS low noise amplifier and does its sensitivity 

analysis which is beneficial for making appropriate design trade offs. We also propose 

a novel low voltage down-conversion mixer design. As an example, all the circuits have 

been designed at 5.8 GHz and integrated in a TSMC 0.18 fi m CMOS process. These 

front-end circuit designs can be used for low voltage and low power wireless applications. 

The remainder of this chapter is organized as follows. Section 1.1 describes the 

motivation for studying the inversion-based output tracking control and learning control 

for nonminimum phase systems and RF CMOS LNA and mixer design. Section 1.2 

describes the outline of the thesis. 
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1.1 Motivation 

Output tracking control of nonminimum phase systems is a highly challenging prob­

lem encountered in many practical engineering applications. The nonminimum phase 

property has long been recognized as a major obstacle in many control problems. The 

solution of the nonlinear regulator involves solving a set of nonlinear PDEs. At the same 

time, the transient errors cannot be controlled precisely and can be large, in general, for 

nonminimum phase systems. Output tracking control using a stable inversion approach 

obtains both bounded state and input trajectories. However, the drawback is that stable 

inversion is noncausal. For this reason, we consider a new method to solve the output 

tracking control of nonminimum phase systems. 

Iterative learning control (ILC) is a feed forward control approach aimed at achiev­

ing high performance output tracking control by "learning" from past experience so as 

to eliminate the repetitive errors from future execution. Although the existing learning 

algorithms have been theoretically proven to provide output error convergence and have 

had successful applications, many such algorithms have practical difficulties with non-

minimum phase systems, especially for the unstable nonminimum phase systems with 

unknown parameters and uncertainties. This motivates us to develop an adaptive and 

robust learning algorithm working for unstable nonminimum phase systems. 

Wireless communications research has experienced a remarkable renaissance in the 

last decade. Fast growth of personal communication market places a high demand on the 

production of low cost and low power transceivers for wireless applications. As a low cost 

alternative, CMOS is becoming a contender for RF front-end IC applications. However, 

there are fewer examples of low voltage and low power CMOS low noise amplifier (LNA) 

designed. At the same time, in low-voltage RF IC design, high LO drives are difficult to 

generate. The most common mixer architecture cannot operate at near 1 V supply due 

to the stack of the three saturated transistors. Thus designing a CMOS mixer with low 

voltage becomes a challenging task. All these challenging targets motivate us to design 

a low voltage and low power front-end RF CMOS LNA and mixer. 

Each chapter is a self-contained paper which has been published in peer-reviewed 



www.manaraa.com

3 

conferences or has been submitted to peer-reviewed journals or conferences and are still 

in the reviewing process. 

1.2 Thesis Outline 

This thesis is organized as follows. Part one contains chapter 2 to chapter 4. Part 

two includes chapter 5 and chapter 6. 

Chapter 2 This chapter introduces a new design procedure for output tracking control 

of nonminimum phase systems. This new controller achieves stable e—tracking 

of a reference profile given in real time via a causal inversion approach. In this 

approach, the nonminimum phase system is first stably inverted on-line to obtain 

both desired (and stable) state and input trajectories. Then an optimal con­

troller is used to stabilize the closed-loop system. We provide a causal inversion 

solution for general nonlinear systems. By using the scaling property, we present 

a causal inversion solution such that the causal state and input trajectories track 

those obtained by stable inversion approach for linear systems. In contrast to sta­

ble inversion, the causal inversion approach does not require precalculation. In 

contrast to nonlinear regulation, the causal inversion approach avoids the numer­

ical intractability of solving nonlinear PDEs. As an example of the application, a 

causal inversion-based controller is designed for tip trajectory tracking of a one-

link flexible manipulator. Simulation results demonstrate its effectiveness in out­

put tracking. This whole manuscript has been submitted to IEEE Transactions on 

Control System Technology for peer review. With positive review comments, the 

revised version has been submitted for the further review. Part of the results has 

been published in several peer-reviewed conferences, which are 2001 J^Ost IEEE 

Conference on Decision and Control, 2002 45th Midwest Symposium on Circuits 

and Systems, and Proceedings of the 2002 International Conference on Control 

Applications. 

Chapter 3 In this chapter, a new adaptive learning algorithm is presented for the 
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repetitive tracking control of a class of unstable nonminimum phase systems. Af­

ter each repetitive trial, a Least-Squares method is used to estimate the system 

parameters. The output tracking error and the identified system model are used 

through stable inversion to find the feed forward input, together with the desired 

state trajectories, for the next trial. An adaptive backstepping based tracking 

controller is used in each trial to ensure the regulation of the desired state trajec­

tories. Simulation results demonstrate that the proposed learning control scheme 

is very effective in reproducing the desired trajectories. This whole manuscript 

has been published in the peer-reviewed conference, The 2000 IEEE International 

Conference on .Systems, Man and CybemeZzcs. 

Chapter 4 This chapter introduces a new robust inversion-based learning algorithm 

for the repetitive tracking control of a class of unstable nonminimum phase sys­

tems. After each repetitive trial, the Least-Squares method is used to estimate the 

system parameters. The output tracking error and the identified system model 

are used through stable inversion to find the feed forward input, together with 

the desired state trajectories, for the next trial. A robust controller is used in 

each trial to ensure the stability of the systems and the output tracking error 

convergence. Sufficient conditions for learning control convergence are provided. 

Simulation studies on systems with gain uncertainty and time constant uncertainty 

are also presented. In addition, simulation results demonstrate that the proposed 

learning control scheme is very effective in reproducing the desired trajectories. 

This whole manuscript has been submitted to IEE Proceedings of Control Theory 

and Applications for peer review. Part of the results has been published in the 

peer-reviewed conference, The 2002 IEEE International Conference on Systems, 

Man and Cybernetics. 

Chapter 5 This chapter presents a 5.8 GHz low voltage and low power LNA design 

integrated in a TSMC 0.18 /im CMOS process, and its sensitivity analysis. This 

sensitivity analysis gives a measure of the sensitivity of the LNA performance to 
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a change in the circuit element values, thereby assisting the designer to choose 

adequate circuit-element tolerances. Such sensitivity analysis of the LNA is very 

beneficial for making appropriate design trade offs. The method employed here is 

inductive source degeneration. All the spiral inductors are implemented on-chip. 

This whole manuscript has been published in the peer-reviewed conference, NASA 

Symposium on VLSI Circuit Design. 

Chapter 6 This paper presents a 5.8 GHz low voltage down-conversion mixer design 

integrated in a TSMC 0.18 /jm CMOS process. The proposed method features an 

RF input stage that converts the RF input voltage to current, which is coupled to 

the core of a Gilbert Cell using current mirrors. This implementation eliminates 

the current source transistor at the bottom and furthermore reduces the supply 

voltage. Common-mode feedback is used for the active load of the mixer. The LO 

frequency is at 5.6 GHz. The designed mixer requires only a 1.5 V supply voltage. 

This whole manuscript has been submitted to 2004 IEEE International Symposium 

on Circuits and Systems for peer review. Part of the results has been published in 

the peer-reviewed conference, the 2003 IEEE Radio and Wireless Conference. 

Chapter 7 finally gives the conclusions. It summarizes the contributions presented in 

this thesis and also provides some possible future research directions for the further 

improvement and extended study. 
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2 Output Tracking Control of a One-Link Flexible 

Manipulator via Causal Inversion 

Abstract— Output tracking control is a challenging problem. This paper introduces 

a new design procedure for output tracking control of nonminimum phase systems. This 

new controller achieves stable e—tracking of a reference profile given in real time via 

a causal inversion approach. In this approach, the nonminimum phase system is first 

stably inverted on-line to obtain both desired (and stable) state and input trajectories. 

Then an optimal controller is used to stabilize the closed-loop system. In contrast 

to stable inversion, the causal inversion approach does not require precalculation. In 

contrast to nonlinear regulation, the causal inversion approach avoids the numerical 

intractability of solving nonlinear PDEs. As an example of the application, a causal 

inversion-based controller is designed for tip trajectory tracking of a one-link flexible 

manipulator. Simulation results demonstrate its effectiveness in output tracking. 

2.1 Introduction 

A system is nonminimum phase (or has unstable zeros in the linear case) if a nonlinear 

state feedback can hold the system output identically zero while the internal dynamics 

become unstable [7]. Output tracking control of nonminimum phase systems is a highly 

challenging problem encountered in many practical engineering applications. The non-

minimum phase property has long been recognized as a major obstacle in many control 

problems. It is well known that unstable zeros cannot be moved with state feedback; 

whereas, if completely controllable [13], the poles can be arbitrarily placed. 

The classical inversion approach for output tracking control uses stabilizing feedback 
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together with feed-forward signals generated by an inverse system. The classical inverse 

problem was first studied by Brockett and Mesarovic [1], In Silverman's procedure [11], 

an input function defined on [0, oo) is obtained by solving an initial condition problem 

for a given output function. Such inverses can be causal but unstable for nonminimum 

phase systems. These linear results were extended to nonlinear real-analytical systems 

by Hirschorn [6] and Singh [12]. Similar to the linear cases, these inversion algorithms 

produce causal inverses for a given desired output ya{t) and a fixed initial condition 

x(to), leading to unbounded u(t) and x(t) for nonminimum phase systems. 

The nonlinear regulation technique for output tracking control was first developed 

by Isidori and Byrnes [8]. This theory provides asymptotic output tracking of reference 

signals generated by an exosystem for a class of nonlinear systems with guaranteed inter­

nal stability. The solution of the nonlinear regulator involves solving a set of nonlinear 

PDEs. At the same time, the transient errors cannot be controlled precisely and can be 

large, in general, for nonminimum phase systems. 

The stable inversion approach was first provided by Chen and Paden [2], It was 

then applied to the nonlinear control problem: output tracking control of nonminimum 

phase systems [4, 5], The output tracking controller in [4, 5] has a feed-forward structure 

with feedback. Both bounded state and input trajectories are obtained. However, the 

drawback is that stable inversion is noncausal. 

This paper introduces a new procedure for designing an output tracking controller 

for nonminimum phase systems of a causal reference trajectory. This new controller 

achieves stable e—tracking, using a novel approach derived from causal inversion. In this 

approach, the nonminimum phase system is first stably inverted on-line to obtain both 

desired (and stable) state and input trajectories. Then an optimal controller is used 

to stabilize the closed-loop system. Compared to the stable inversion method, the causal 

inversion approach does not require precalculation. Compared to the nonlinear regula­

tion method, causal inversion avoids the numerical intractability of solving nonlinear 

PDEs and transient errors are relatively small. As an example, a causal inversion-based 

controller is designed for a one-link flexible manipulator system, in which preloading the 
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links is not required. 

The remainder of this paper is organized as follows. The next section defines the basic 

framework and the problem to be solved. Section 2.3 defines the causal inversion problem 

and presents the solution with its properties for a class of systems. Section 2.4 studies the 

controller design problem. Section 2.5 applies the causal inversion approach to design a 

tip trajectory tracking controller for a one-link flexible manipulator. Simulation results 

are discussed. Finally, concluding remarks are given in Section 2.6. 

2.2 Basic Framework 

Consider a nonlinear system of the form 

i - /(z) + g(z)% 
(2.1) 

3/ = 

defined on a neighborhood X of the origin in 5Rn, with input u E $?m and output y € $îp. 

f{x) and Qi{x) (the ith column of g{x)) for i — 1,2, • • • , m are smooth vector fields, and 

hi(x) for i = 1, 2, • • • ,p are smooth functions on X, with /(0) = 0 and h(0) = 0. 

Without loss of generality (WLOG), consider a nonlinear system of the form (2.1) 

with the same number m of inputs and outputs and 

3/= (3/1,3/2,'" ,2/mF 

U — (u\, ti.2, , Um) 

&(%) = [bl(z), /l2(%), ' - , 

#(%) = g2(z), ' " , 9m(z)]. 

Making the following assumptions: 

A1 : This system (2.1) has a well-defined relative degree r — { n ,  r 2 ,  •  •  •  ,  rm}T  G Nm  

at the equilibrium point x = 0; that is, in an open neighborhood of x = 0, 

(i) for all 1 < j < m, for all 1 < i < m, for all k < — 1 and k > 0, and for all x, 

^,l^(z) - 0, (2.2) 

(ii) the m x m matrix (3(x) with /3ij(x) = Lg^^'^h^x) is nonsingular. 
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Note that since the control u does not appear explicitly in y = h(x), it yields > 1 

for all i. Therefore, r; — 1 G N and the operation in the definition of j3 is well defined 

[3], 

A2 : The reference output trajectory y  d i t )  is a sufficiently smooth function of time. 

%(2), " , G fl .Loo, with == 0 for t = 0. 

A3 : The system (2.1) is stabilizable and observable. 

For a given reference y dit) satisfying Assumption A2, the following tracking problem 

is defined: 

Definition 1 : The system is said to achieve stable asymptotic-tracking if \\yd(t) — 

y(£)| |  —>• 0, as t —> oo with bounded x(t) and u(t). 

Remark : Under A2, Definition 1 appears automatically satisfied as long as the 

closed-loop system is stabilized. However, if y dit) has a nonzero final value as mentioned 

in the previous remark, the tracking problem requires much more than stabilization. 

Definition 2 : Given an e > 0, the system is said to achieve Stable e— Tracking if 

IIDd{-) - y(-)lk2  < e  with bounded x(t) and u(t). 

Note that stable e—tracking implies stable asymptotic-tracking. The proposed con­

troller will provide a stable e—tracking for nonminimum phase systems of a causal ref­

erence trajectory. 

2.3 Causal Inversion Problems 

For the system (2.1), consider the following problem [14]: 

Causal Inversion Problem: Given y dit) satisfying Assumption A2, find a nominal 

control input ti^(t) and a desired state trajectory Xd(t) such that 

(1) ud  and xd  are bounded, and 

ûd(t) —> 0, Xd(t) —»• 0, as t —> oo. 

(2) Xd(t) and ûd(t) are causal; that is, Xd(t) = 0,ûd{t) = 0 for t < 0. 

(3) Exact output matching is achieved 

= 3/dW (23) 
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and 

= 3/^, for z = 1, - , n - 1. (2.4) 

(4) - /(^d) - g(zj)%d -> 0 as oo. 

Remark : In the stable inversion problem, condition (2) is not required and it 

requires 

%d ~ f{xd) + 9{xd)ud> 

where xd  and ud  are the unique solution to the stable inversion problem. This difference 

implies that the stable inversion solution is required to satisfy the system dynamics for 

all time but the new causal inversion solution is only required to satisfy the system 

dynamics asymptotically. As a result, the causal inverse solution ud, if applied as the 

sole input to the system in an open-loop fashion, will not be able to generate yd exactly. 

In contrast, the stable inverse solution ud is capable of generating yd exactly in the 

ideal case. However, as it will become clear later, the causal inverse solution does 

approximately track the stable inverse solution with the added property of being causal. 

The word "inversion" in our causal inversion implies that xd does provide exact output 

matching; that is, 

&(%(;)) = ?/d(t), 

and 

!/)&(%) = for % = 1, - - - , - 1. 

This is very appealing since one almost never implements an inverse control in open-loop. 

In contrast, with this approach, a stabilizing feedback control can be designed to track 

xd(t) which leads to tracking of yd(t). We will design such controllers in Section 2.4. 

2.3.1 Causal Inversion for Nonlinear Systems 

From Assumption A2, "certain" is made clear here, which means yd  should be r 

times differentiate. Under Assumption Al, the system can be partially linearized. To 

do this, yi is differentiated until at least one Uj appears explicitly. This will happen at 

exactly the th derivative of % due to (2.2). Define = y\k~^ for i = 1, • • • , m and 
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k — 1, • • • , ri, and denote 

f =(&,&-•• ,(Zf 

Choose rj, an n — J2 ri dimensional function on $?n, such that (£r,r?T)r = 4>{x) forms 

a change of coordinate with ip(0) = 0 [7]. In this new coordinate system, the system 

dynamics of (2.1) becomes 

& = & 

< for i = l,---,m (2.5) 
(i = ci 
Sr,;-1 s n 

=  ̂ ( ^ ^ )  +  

+92((,7?)^, 

which, in a more compact form, is equivalent to 

2/W = a((, %) + /)(^ T;)tt (2.6) 

77 = 9i(f,77) + <72((;,?7)%, (2.7) 

where 

«(^, = [«l(^, ̂ ), %(& ??),'- , «m(6, 

and a(0,0) = 0 since /(0) = 0. By the relative degree assumption, /3(£, rj) is nonsingular, 

and the following feedback control law 

%  =  / r X W [ % - o ( W  ( 2 . 8 )  

is well defined and partially linearizes the input-output dynamics relationship into m 

chains of integrators, yf1^ = for i = 1, 2, • • • , m; where v = [t>i, u2, • • • , vm]T 6 is 

the new control input. The inversion problem requires y(t) = yd(t), which leads to: 

vi =  Vdi ^ >  Î  =  1 , 2 ,  •  •  •  ,  m  
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€ = = T- (2.9) 

Equation (2.7) becomes the zero dynamics driven by the reference output trajectory, 

?7 = p(z/d"\W), (2-10) 

where 

vV = bX".yi'\-'.ytJ:>]T 

p(vd\td,v) = ii((d,v) + i2(ii,vWKi,v)]~1lVd>-«Ki.i)]-

Equation (2.10) is often called the reference dynamics. 

A4 : 7] = 0 is a hyperbolic equilibrium point of the reference zero dynamics. 

Linearizing the right hand side of (2.10) at the equilibrium point rj = 0 gives 

7) = A,? + g%/^ + g(t), (2.11) 

where 

^ (%r, 7?) 1^=0, (d=0, %W=o 

&, y?) - ̂  

For a real matrix A, there exists an invertible in — YL rù x (n J2 ri) matrix Pi, such 

that J = Pf 1APi, where J is the real Jordan form of A. Therefore, with the coordinate 

transformation 77 = Pi[rjs the reference dynamics in the new coordinate is in real 

Jordan form. As a result, (2.10) can be rewritten as: 

?%, - + da(2/d\ %), %(±oo) = 0 (2.12) 

% = + du(3/ï\ %), %(±w) = 0, (2.13) 

where 1 O
 B s  

II II O
 1 

Bu  

and A s  has all eigenvalues in the open left-half plane with dimension n s  x ns, Au  has all 

eigenvalues in the open right-half plane with dimension nu x nu, Bs is with dimension 
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n s  x 1, B u  is with dimension n u  x 1, and d s ( - )  and d u ( - )  denote the higher order terms 

(H.O.T.) of the expression. 

Together with (2.9), these define the desired stable inverse system, from which a 

bounded but noncausal inverse solution can be obtained [3]. 

For the causal inversion problem, a controller v  is introduced to stabilize the unstable 

reference zero dynamics. Two dynamic equations yield the following: 

%), 7/a(0) = 0 (2.14) 

V u  =  A u f j u  +  B u y ^  ^  +  d u ( y ^  \  V s - i  V u )  + v, ryu(0) = 0, (2.15) 

where ^ and v  is to be chosen to reach the asymptotic stability of (2.14, 2.15). 

By selecting 

i; = - kBui/j - A:cL(^, &,%), (2.16) 

where k > 2, then equation (2.15) becomes 

Vu = —(k — 1 )AuVu — {k — l ) B u y^p — (k — 1 ) d u ( y ^  \ % d ,  V s ,  V u ) ,  %(0) = 0. (2.17) 

Note that — Au  is Hurwitz and du{-) in (2.17) is H.O.T. By Assumption A2, —> 0, 

for % = 1, • • • , r as t —» oo. Notice that fj = 0 is an exponentially stable equilibrium point 

for  the  nonl inear  sys tem (2 .17)  [9] .  Hence f ] u ( t )  —>• 0  as  t  — >  oo is  obta ined.  Plugging f ) u  

into (2.14), and regarding it as an external input, the same argument leads to fjs(t) —> 0 

as t —» oo. Thus fj(t) —> 0 as t —>• oo. Also, ^ —*• 0 as t —> oo. Therefore, there exist a 

constant T > 0 such that ||^(*)||l2 and \\fj(t)\\L2 are inside a closed ball with radius e 

when t  >  T ,  where  e  >  0.  On the  c losed bal l ,  i p ( x d )  —  [ £ j  f j T ] T  ~  [ £ T ,  [ v ï  V Ï ] P Ï ) T  

defines a local diffeomorphism. Its inverse 

% = (2.18) 

is a smooth mapping, that is, it has continuous partial derivatives of any order. There­

fore ,  there  exis ts  a  constant  L,  such that  \ \ D c f ) \ \  <  L .  
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From the definition of yd and (2.9, 2.14, 2.17), we can have Çd(£), V s (t ) , V u (t) —> 0 as 

t —> oo. It yields fj(t) —> 0 as t —>• oo. It further produces 

ll&lk < e (2.19) 

l l % l k  <  e  ( 2 . 2 0 )  

where e > 0. From (2.18), we have 

^ = (2.21) 

Consequently, it yields 

< ||D^||^||[&,77]||^ < _L||[&,^]|r. (2.22) 

From (2.19, 2.20), we have 

ll^dllf* —^0, aa ( ̂  oo. (2.23) 

Therefore, 

Éd —» 0, aa ( —> oo. (2.24) 

Meanwhile, 

"d - - «(&,# (2.25) 

Then x,i and ûd are bounded and Xd(t) , U d (t) —> 0 as t —» oo. Moreover, by the definition 

of 1^, h(xd) = yd and L l
fh(xd) = y^ for i, - • • , ri — 1 are obtained. At the same time, 

since Xd(t),ûd(t) —»• 0 as t —> oo, then 

/(%) + g(%)% ^0, aa ( ^ oo. (2.26) 

Combining (2.24,2.26) yields 

% - /(%) - 9(%)«d ^0, as ( ̂  oo. (2.27) 

Thus a casual inversion solution to nonlinear systems has been provided. The algo­

rithm can be summarized in the following theorem. 



www.manaraa.com

15 

y* 

y j '  

x=Ax)+g(xy 
y = A(i)  %(o) = o 

Vu = 4Â + V/' + <tJjP,?*ris,ÏÏJ + v, Î7„(0) = 0 

•X 
1—> 

p,  & 

r-fr 

Figure 2.1 Block diagram of causal inversion 

Theorem 1 : Under Assumptions A1-A4, a causal inversion is given by (2.18, 

Wtere &W % are soked 61/ ^.9^, regpec(we^ aW i; M 

Without loss of generality, for simplicity, let k  =  2 for the rest of this paper. The 

block diagram of causal inversion is shown in Figure 2.1. 

By applying the same strategy to linear systems in the next section, this presentation 

will show that a causal inversion solution is obtained. 

(2.28) 

2.3.2 Causal Inversion Solution for Linear Systems 

Consider a linear system of the form 

x = Ax + Bu 

3/ = 

where x  G §Rn, input u G ï?m, output y  G 5Rm, A 6 Knxn, B G 5?™xm, and G G $?mxn, 

with a well-defined vector relative degree. Given a smooth reference output trajectory 

y dit) with y dit) = 0 for t < 0 and t > tf, for the inversion problem, let y = yd and 

u = Ud in (2.28). Then this system becomes 

x = Ax + Bud 
(2.29) 

Ud — Cx.  

Differentiating y dit) until Ud appears explicitly in the right-hand side, solving for Ud, and 

substituting into (2.29) yields 

x( t )  =  Ax  i t )  + By^\ t )  (2.30) 

%d(2) = CT(t) + D%/^(t), (2.31) 
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where A E 9T*", Ë E C E D E % and 

Â = A -

g = B(CA^-^B)'^ 

C = 

D = (CA('-^g)-^ 

Now performing a change of variables 

xd = Pz = P[£, t]s, r]u}T, (2.32) 

gives 

| + (2.33) 

^ = A^ + B^ (2.34) 

% = + (2.35) 

% = C, C,][^ % %]^ + D?/M, (2.36) 

where t]s  € 9?"-*, rju 6 3?™" ; Ac, Aa, Au are real Jordan matrices of suitable dimensions; Ac  

has r eigenvalues at zero; As has all eigenvalues in the open left-half plane; and Au has 

all eigenvalues in the open right-half plane. Thus the inverse system has been decoupled 

to center, stable, and unstable subsystems. 

Picking the transformation matrix P so that the center subsystem is a simple chain 

of r integrators, solving for £, and imposing two boundary conditions on the stable and 

unstable subsystems yield 

( = [%, 2/d, " , (2-37) 

?%, = A,7/, + B,̂ , Z  ̂0; %(2) = 0, V t < 0 (2.38) 

% = + = V(>ty. (2.39) 

Along with (2.36), these equations define the desired stable inverse system. For stable 

inversion, the bounded solutions are found by integrating forward in time for the stable 

subsystem and integrating backward in time for the unstable subsystem. In this ap­

proach, an a priori knowledge about is required, which means that it is a noncausal 

solution. 
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Here, a controller v  is introduced to stabilize the unstable subsystem 

Vu = A u f j u  + B u y d  ^  + v ,  7?u(0) = 0. (2.40) 

Choosing 

v  =  —2A u Vu — 2B u y^  ^ (2.41) 

and substituting it into (2.40) along with (2.39) yields 

ïu  =  -A u f j u  ~ B u y^ \  %(0) = 0. (2.42) 

Since A s  and —A u  are Hurwitz, this result leads to bounded solutions for f j s ( t )  and f ju ( t ) .  

Letting y^ —> 0, for i = 1, • • • , r as t —> oo, causes fjs{t) —> 0 and > 0 as t —> oo. 

Also, |d = 0 for t  < 0 and for t  >  t f .  

Set |d = £ and fjs = Vs, and let 

% = (2.43) 

= Geld + CS?7S + CuVu + (2.44) 

Then Xd and Ud are bounded, and Xd( t),Ud( t )  —> 0 as t  —> oo. And by the definition of 

|d, Cxd = yd and Ll
fh(xd) = for i = 1, • • • , n - 1 are obtained. 

Likewise, a similar argument may be applied to linear systems. Since xd{t),ûd { t )  —> 0 

as t —> oo, we have 

Axd + Bu d  —> 0, as t  —> oo. (2.45) 

From the definition of y d  and (2.37, 2.38, 2.42),we can have Cd ( t) , f js( t) ,Vu(t)  -> 0 as 

i —> oo. From (2.43), we have 

(2.46) 

Thus we have 

Xd —^ 0, as t  —» oo. (2.47) 

Combining (2.45, 2.47), we have 

Xd — Axd — Bùd —» 0, as t  —> oo (2.48) 
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Thus the causal solution for linear systems has been provided. 

Let f j  = f j u  — r j u .  Suppose the initial condition for (2.39) is r j u 0, then 

% = + a, %(0) = -%o- (2.49) 

Theorem 2 : Consider a linear system described by (2.28). Given a low pass signal 

g(t) 6 .Li n _Loo aW 2/^(Z) = g(at), /or «M?/ > 0, (/tere a #me sm/mg 

factor a such that 

ii) \\^d 11L/2 ^ 

iii) \\v \ \ l 2 < €-v 

Proof : To simplify the proof, the dimension of the unstable subsystem is assumed 

to be nu = 1. In this case, both Au and Bu become scalar s. Let scalars a and b represent 

Au and £„, respectively. Substituting v into (2.49) yields 

% = - 2%. (2.50) 

From (2.39), for the noncausal signal r j u ( t ) ,  the bilateral Laplace transform is given 

by 

(^ 51) 

where the regions of convergence is Re(s) < a with a > 0. 

From (2.50), the Laplace transform of rju is given by 

«.) = 

where the regions of convergence are —a < Re(s) < a with a > 0. 

Letting 

H A S )  =  =  

gives 

= gi(g)^(a), ^(5) - ̂2(5)2/^^) 
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(i) Given a low pass signal g(t), there exists a time scaling factor a\ > 0, such that 

yd\t) can be chosen as 

2/%) = 9W). 

Then 

g(w) = 

Furthermore, by the scaling property of the Fourier transform, it follows 

Vd\^0 — F{g{a it)) = —g(—)• 
Oi\ o?i 

Since both Hiiuj) and (u j) are bounded, set Ki = \\y^+ ||//'1(w)||^0, where K\ 

is finite and K\ > 0. Notice that 

r oo 
/ \g(uj)\2duj —> 0, as uj\ —> oo. 

J  W l  

Thus, Ve^ > 0, there exists iOi(ev) such that 

/*°° 7T f ^  

Ju> i 

Similarly, Ve,, > 0, there exists (v2(e^) such that 

Z'CV2 7T6^ / 
/o ^1 

Given iv2, Ve,, > 0, there exists a.\ such that a < «i 

/•oo _,2 
/ |y/ M|2C&J < 

J U2 1 

The spectral separation is shown in Figure 2.2. 

Consequently, 

/<! < ^(II^W||^ + ||^(w)||^ 
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|ya'°<m)l 

o 

Figure 2.2 Spectral separation 

Then by Parseval's theorem, 

H Mil 
2 
L2 

It then follows 

< S (2.52) 

(ii) Furthermore, combining (2.36, 2.44) yields 

11 ^d 11L2 = 11 Cufju IJ £2 . 

Note that Cu is a scalar in this case, and c can be used to represent Cu. Thus, it follows 

N - = Eu, where > 0. 

(iii) Similarly, given the low pass signal g( t ) ,  there exists a time scaling factor a 2  > 0 

such that y^\t) can be chosen as 

2/d% = 9W). 

Then 

g(w) = f (g(t)), = %(g)|a=jw 

Furthermore, 
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Since both H2( u j )  and y d \ tu)  are bounded, set K2 — ||y^(^)||L + 11-^2(^)11^, where K2 

is finite and K2 > 0. Notice that 

JT \g{u)\2duj —> 0 as —> oo. 

Thus, Vei > 0, there exists u^(ei) such that 

jT|g(w)|2<L,<gi 

and Vei > 0, there exists (*4(ei) such that 

r  \Hi(uj)\2doj < 

Given u>'2, Vei > 0, there exists a2 such that a < a2 

By the same argument, 

J^°|?)(w)|2dw = ^|jf2W^(w)pdw + j^|n2(w)^(w)|^dw 

= iref. 

Then, by Parseval's theorem, it immediately follows 

HWIk < fi- (2-53) 

As a result, Equation (2.41) can be rewritten as follows 

v  = —2A u f j u  — 2B u y d  ^  

= —2A u f j u  + 2A u r ) u  — 2A u r j u  — 2B u y d  ^  

=  —2A u ( r j u  — r j u )  — 2(A u r j u  + 2B u y d  ^)  

=  —2A u f j u  — 2r) u ,  

where in the last step, (2.39) is employed. 

This then yields 

\ m l 2  <  m \ v U \ \ l 2  + 2||7)„||L2 

<C 2(26rj 4" 2ei 

= eV) where ev > 0. 
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Choosing a = min(a1, tt2), then all the conclusions can be obtained. 

Q.E.D. 

Note that the proposed theorem easily extends to the nu > 1 case. 

Remark : 

The same strategy can also be applied to the nonlinear case. By proper scaling, the 

rate of change of can be made arbitrarily small. In doing so, the equations (2.12, 

2.13,2.14, 2.17) become quasi static. Let r]sq,i]uq,fjsq, and fjuq denote the quasi static 

solutions of the dynamic (2.12, 2.13, 2.14, 2.17); that is, the solutions of (2.12, 2.13, 

2.14, 2.15) can be written as 

0 = + ds(3/î\ %), %(^=oo) = 0 (2.54) 

0 = + d«(2/d\ %«), %(=l=oo) = 0 (2-55) 

0 = + ds(2/r, &, W, %(0) = 0 (2-56) 

0 = + BuZ/d") + cL(^\ &, W +%(0) = 0- (2-57) 

Then the true solutions of (2.12, 2.13, 2.14, 2.15) can be written as 

Vs — Vsq "™h Gg (2.58) 

Vu — Vuq 4" ty, (2.59) 

% = %, + ê, (2.60) 

Vu = Vuq &lt> (2.61) 

where e s ,  e„, ës, e u  > 0, and can be made arbitrarily small by making y^  arbitrarily slow. 

By comparing (2.54) and (2.56), and (2.55) and (2.57) respectively, we notice that 

they are the same equations. In other words, 

(2.62) 

Vuq = Vuq- (2.63) 

Furthermore, it yields 

\\Vs — V S \ \ l 2 =  \ \ V S \ \ l 2  <  ens (2.64) 

\\Vu ~ ^?u||l2 = II^I|l2 < enu- (2.65) 
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Therefore, by processing scaling, the difference of fju and 7]u is arbitrarily small; that 

is, % —» % as Z —» oo. 

Suppose the causal inversion of nonlinear systems can be solved, since ||%||^ < ens  

and ||?7«||l2 < enu, and the system has a well-defined relative degree at the equilibrium 

point zero, then ip{x) = [£T if]T — [£T, [rjs tju]PJ,]T defines a local diffeomorphism. 

Its inverse is x = </>(£, r/). fj has been defined as fj = Pi[fjs  fju]T, thus given an eu > 0, ud 

can be found such that 

||% — ud\\L2 < tu-

Furthermore, given an ev  > 0, the following inequality is also satisfied 

11 ^ ! I L/2 ^ t-V -

Therefore, the conditions for the linear case also apply to the nonlinear case. 

2.4 Output Tracking Control 

When defining x(t) = xd(t) - x(t),û(t) = ud(t) - u(t), and y = yd(t) — y(t), the error 

dynamics for (2.1) are given as follows: 

2 + g(^)« + g(%)& + 
(2.66) 

2/ = ^(&), 

where /(&) = /(fj) - /(z),g(î) = g(%) - g(z), and /i(ï) = /z,(^) - /i(a;). 

Since the design goal is to achieve stable e—tracking so that 

||?/||^ < e as f -» oo, 

with bounded x(t), an controller is the natural choice. Suppose the closed-loop 

nonlinear mapping from v to y is given by 

= 0()i;. (2.67) 

If an HOO controller K(-) could be found, it would give 

Wk < ll$(-)lloo||!;L2. 
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^ Causal 

U 

•> System 

Inversion Controller 

X 

Figure 2.3 Block diagram of close-loop system 

Since ||<&(")I Ioo||®||l2 is bounded, this implies ||y||i2 < 7ey = e with e > 0 as t —>• oo. From 

the definition of causal inversion, % is bounded, then x is also bounded by Assumption 

A1 if Hoo controller is appropriately designed. As a result, x(t) must be bounded; 

therefore stable e—tracking is achieved. The block diagram of the closed-loop system is 

shown in Figure 2.3. 

Similarly, the error dynamics for linear systems (2.28) are addressed as follows: 

Theorem 2 in Section 2.3.2 has provided the causal inversion solution for linear systems. 

And given an ev > 0, ||ï>||l2 < with ev > 0 can be made. 

An Hoo controller is required to design for these linear systems. Suppose the closed-

loop transfer function from y to y is given by the linear fractional transformation 

Let K(s) be the controller that minimizes the gain from v and y (see Figure 2.3), 

where G is the general plant and K is the controller. This would then yield 

This implies stable e-tracking is achieved, which indicates that the total energy in 

the transient tracking error can be controlled within any given requirement. 

(2.68) 

(2.69) 

||z/||^<||-FXG,A3||oo|M|f,2<7f,, = e, where e>0. 
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y 

Figure 2.4 Control configuration for linear systems 

2.5 An Example: A One-Link Flexible Manipulator 

A closed-loop controller for a one-link flexible manipulator is designed in this section 

using causal inversion. 

2.5.1 Dynamics Model 

A nonlinear one-link flexible manipulator model is obtained from [10]. A simple 

modelling technique divides the flexible link into rigid segments that are connected by 

elastic springs, where link deformation is concentrated. The following treatment will be 

limited to the case of two equal segments of uniform mass moving along the horizontal 

plane. 

Let m and I denote the total link mass and length, k the spring elasticity, and u 

the input torque. With reference to Figure 2.5,091^2 is a fixed reference frame, 91 is the 

angular position of the link base, while 6>2 is the flexible variable. The dynamic equations 

a r e  _  _ _ _ _  _  

fell(^2) 612(62) 0i 
+ 

CI (02, 01, 61) 1 

612(02) 622 À 62(^1, Ô\) + k02 + d202 0 
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Figure 2.5 A simple one-link flexible manipulator 

with the elements of the inertia matrix B(92 )  given by 

^11(02) = G + 2CCOS(02) 

612(02) = 6 + ccos(02) 

622 = b 

and Coriolis and centrifugal terms 

ci(02, 0i, 02) = —c(0g + 20102)8111(02) 

C2(02,0i) = c0^sin(02), 

where 

a = 5ml2/24, b = ml2/24, c = ml2/16. 

In (2.70), di and d2 are damping coefficients representing viscous friction at the joint 

and link structural (passive) dissipation, respectively. State equations can be obtained 

by setting x — (#1, 02, 01,02)^ G 3ft4. 

The linearized expression of the end-effector angular position, as seen from the base, 

y = 0i + -02 (2.71) 

will be taken as the controlled output for the system. 
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Linearizing the above dynamics model for this one-link flexible manipulator yields 

02 

0i 

0 

0 

(b+c)k 
ab—b 2—c 2  ab—b 2—c 2  

1 

0 

-bdi  

0 

1 

(b+c)d2 
ab—b 2  — c 2  

(a+2c)d2 

01 0 

02 0 
+ 

01 b 
ab—b 2  —c 2  

à —b—c 
V2 _ab-b 2 -c 2  _ 

U 

(2.72) 
r\ — (a+2c)/c (b- \ -c)d\_ 

ab—b 2—c 2  ab—b 2—c 2  ab—b 2—c 2  

y = [  1 - 0 0] [6*i, 02,01, 0 2}T  • 

In the following section, a casual inversion-based controller will be designed for this 

linearized model. 

2.5.2 Controller Design 

In the system after inversion, the input-output linearizing coordinates are x 

(y, y, 02, 02). A linear transformation in state space #(1) can be expressed as follows: 

#(%) = 

1 
tee

 

y 

02 

1 

1 i 0 0 

0 0 1 i 

1 
O

S 

« 

02 

0i 

1 1 

(2.73) 
0  1 0  0  

0 0 0 1 

Then the zero dynamics driven by the reference output trajectory can be obtained and 

written in the following state-space form by setting y(t) = y^{t), 

1 1 

II 

1 

II 
1 

+ Briijd, (2.74) 

where 

Arj — 

0 1 0 
, B v  = 

2k 2d 2  

, B v  = 
2(b+c) 

_c—b c—b_ c—b 

Moreover, k > 0, and d2 > 0. Since c > b, and c— b > 0, it is seen that the zero dynamics 

is unstable, which means the system is a nonminimum phase system. 

There exists a linear transformation 

(2.75) 
02 

= Pi  
Vs 

= Pi  
Vs 

> _  Vu 
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which transforms (2.74) into 

Vs = Asfjs  + Bgïjd 

Vu Au t /u 4" Buyd. 

Two dynamic equations are defined as follows: 

Vs — A s f j s  + Bsy,i, f js (0) — 0 

Vu = Aut]u + Buyd + v, ?7„(0) — 0. 

By choosing v = —2Aufju — 2Bujjd and solving the following equations: 

fjs = Asfjs  + Bsyd, fjs(0) = 0 

Vu = -Aufju - Buijd, %(0) = 0, 

(2.76) 

(2.77) 

(2.78) 

the bounded rj3 and r/„ can be obtained. Moreover, since [02d #2d]T = Pi[Vs Vu]T ,  it 

follows that 

(2.79) 

1 0 -0.5 0 yd 

0 0 1 0 2/d 

0 1 0 -0.5 #2d 

0 0 0 1 

The nominal input is then calculated by 

Ud — d\6\d + 
9^1{k82d + d2d2d) + 2̂ ab

b 
b ^ jjd-

The controller is composed by the following structure 

w = iid + #(^d - z), (2.80) 

where Xd denotes the state variables of the forward dynamics, Xd = {Ou-, 92d, #id, &2d)-

Then a standard optimal controller is designed to find the stabilizing controller K 

for stabilizing the forward dynamics. 

2.5.3 Simulation Results 

The parameters for the one-link flexible manipulator were chosen the same as in De 

Luca [10]. I = 1 m, m = 0.2 kg, k = 5 N • m/rad, and d\ = d2 — 0.01 N • m • sec/rad. 
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Figure 2.6 Desired (solid) and actual (dotted) output trajectories for Case 
1 

Let the desired output trajectory be defined as follows: 

^yZ - iBm(^t), 0 < Z < Z; 

Z > Z; 

as shown by the solid curve in Figure 2.6. 

For the given trajectory, the following data were used: yo = 0°, j// — 90°. The initial 

conditions are 9i = 02 = = 02 = 0. Two cases are simulated below. 

Case 1 : t f  =  1  second and Case 2 : t f  =  0.5 seconds. 

The desired and actual trajectories of the output for Cases 1 and 2 are shown in 

Figures 2.6 and 2.7 respectively. The output tracking errors for Cases 1 and 2 are shown 

in Figures 2.8 and 2.9 respectively. The maximum error during transients for Case 1 is 

relatively small (around 0.7°); whereas, the maximum error during transients for Case 

2 is around 3.5°, which is significantly larger than in Case 1. 

Furthermore, when applied to a one-link flexible manipulator, causal inversion has 

the advantages of not requiring the preloading for the links (as does stable inversion), 

as well as eliminating the need to solve a set of nontrivial partial differential algebraic 
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Figure 2.8 Output tracking error trajectory for Case 1 
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Figure 2.9 Output tracking error trajectory for Case 2 

equations (as required by the nonlinear regulation approach). 

2.6 Conclusions 

This paper introduces a new procedure for designing a nonminimum phase output 

tracking controller driven by a causal reference profile. The output tracking controller 

has a feed-forward structure with feedback. In this approach, the nonminimum phase 

system is first stably inverted on-line to obtain both desired state and input trajectories 

that map exactly into the desired output trajectory. Then an Hoo optimal controller 

is used to stabilize the closed-loop system. This new controller achieves stable e— 

tracking. This new approach provides causal solutions and avoids solving the nontrivial 

PDEs. As an example, a causal inversion-based controller is designed for tip trajectory 

tracking of a one-link flexible manipulator. Simulation results demonstrate that the 

causal inversion approach is very effective for obtaining output tracking for flexible 

manipulators. This new approach has many important engineering applications such as 

in rocket tracking and aircraft altitude control problems. Future work will continue to 
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explore new applications of causal inversion. 
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3 Adaptive Learning Control for Nonminimum Phase Systems 

Abstract — In this paper, a new adaptive learning algorithm is presented for the 

repetitive tracking control of a class of unstable nonminimum phase systems. After each 

repetitive trial, a Least-Squares method is used to estimate the system parameters. The 

output tracking error and the identified system model are used through stable inversion 

to find the feed forward input, together with the desired state trajectories, for the next 

trial. An adaptive backstepping based tracking controller is used in each trial to ensure 

the regulation of the desired state trajectories. Simulation results demonstrate that the 

proposed learning control scheme is very effective in reproducing the desired trajectories. 

3.1 Introduction 

Iterative learning control (ILC) is a feed forward control approach aimed at achieving 

high performance output tracking control by "learning" from past experience so as to 

eliminate the repetitive errors from future execution [9]. This approach was motivated 

by the observation that human beings are able to improve performance through repeated 

practice. Since a learning controller is able to eliminate the repetitive errors that exist 

when using a servo controller alone, it has great potential in future robotic systems. 

The concept of iterative learning control was first introduced by Arimoto et al. [1]. 

It is based on the use of repeated trials to track a desired trajectory. At each trial, the 

system input and output signals are stored. The learning control algorithm then evalu­

ates the performance error. Based on the error signal, the learning controller computes 

a new input signal, which is stored for use during the next trial. The new input is chosen 

such that the performance error will be reduced in the next trial. One of the important 
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features of iterative learning control is that it requires little a priori knowledge about 

the controlled system during the controller design phase. 

Arimoto's original learning controller is called a D-type algorithm. Since then, many 

researchers have proposed various learning control schemes. Moore extended Arirnoto's 

method to systems with a relative degree higher than one [9]. Hauser presented a 

nonlinear version of Arirnoto's method for a class of nonlinear systems [5]. Application 

of this type of learning controller to robotics was reported in many studies such as [2] 

and [7]. The basic and succinct exposition of ILC is surveyed in [10]. 

Although existing learning algorithms have been theoretically proven to provide out­

put error convergence and have had successful applications, many such algorithms have 

practical difficulties with nonminimum phase systems [3]. An adaptive learning algo­

rithm that works for nonminimum phase systems was recently developed by Gao and 

Chen [3]. In this paper, an adaptive learning algorithm is further developed to work 

for unstable nonminimum phase systems. Simulation results are presented to show the 

effectiveness of the proposed adaptive learning algorithm. 

The remainder of the paper is organized as follows. In the next section we define a 

class of desired trajectories under consideration and state the problem of ILC. Section 

3 presents the new adaptive learning control law. Section 4 contains simulation results. 

Finally, some conclusion remarks are given in Section 5. 

3.2 Problem Statement 

Consider a system dynamics in the k th  trial: 

where is defined on a neighborhood X of the origin of 5R™, 6 is a parameter vector, 

with input uk E and output yk 6 $?p. The mappings / and g are smooth in and 

Uk, with /(0, 9,0) = 0 and h{0, 9,0) = 0. 

We make the following assumptions: 

Dk — h(xf., 9 , Uk) 

(3.1) 

(3.2) 
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(Al) The system has a well-defined relative degree r = (7*1, • • • , rm)T which is known. 

The linearization of the system about an equilibrium point, which is assumed to be the 

origin WLOG, is completely controllable. 

(A2) The order of the system, n, is known. 

(A3) The system parameter vector 9 is unknown or known incompletely. 

(A4) A desired output trajectory is given and is a sufficiently smooth function of t 

satisfying y dit) = 0 for any t G (—00,0] U [T, 00) and finite for any t G (0, T), where 

T > 0. 

Note: In (A4), sufficiently smooth means that the signal has continuous derivatives 

of any order up to the relative degree. (A4) also requires y dit) having a compact support 

[0 ,T], 

Iterative Learning Control Problems : 

Given a desired output trajectory y dit) and a tolerance error bound e for a class of system 

(1) and (2), starting from an arbitrary continuous initial control input Uq(-) and initial 

state $o(-), iterative learning control is to find a sequence of desired state trajectory 

xfi-) and desired control inputs iz^(-), which when applied to the system, produces an 

output sequence yk(-) such that 

(1) | |%(-) -  3/fc(-)||oo < e, as k —> 00, where k is the trial number and | | / | |oo = 

suPte[o,r]ll/WII-

(2) NMH ^ f, NWII < 6 (-oo,0] U [T,+oo). 

(3) u'lit), xfit), Ukit), and %(t) are uniformly bounded. 

The system can be represented in terms of desired control input itf(-) and output 

yki~) in the kth trial by means of a nonlinear time-varying operator II as follows: 

%&(.) = n(-K(.) (3.3) 

In this dynamic process, the functions have two arguments: continuous time t and 

the trial number k. In the sequel it is assumed that the variation of the operator over 

two consecutive trials is slow and can be neglected. Then the operator obtained by 

identification performed in the kth trial can be used to determine the input for the 

(k + l)th trial. This general description of the problem allows a simultaneous description 
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Off-line Model 
Estimation 

Inversion-based 
Learning 

Adaptive 
Controller uk (•) 

Figure 3.1 Block diagram of adaptive learning control system 

of linear or nonlinear dynamics, continuous or discrete plant, and time-invariant or time-

varying systems. 

For applying linear ILC, however, the plant must fulfill the following conditions: (1) 

The desired trajectory yd{t) is identical for every trial and satisfies Assumption (A4). 

(2) Each trial has the fixed period T. (3) The system parameters are fixed or very slowly 

time-varying. 

3.3 Adaptive Learning Control 

In section 2, we have given the general setup of learning control. In this section, 

an adaptive learning controller will be presented. The block diagram of the adaptive 

learning system is shown in Figure 3.1. 

The proposed adaptive learning control strategy has three components: a parameter 

estimator, a stable inverse system, and an adaptive backstepping feedback controller. 

The parameter estimator is in charge of "learning" the parameterized model of the sys­

tem. During each trial, the input and output trajectories are recorded. Then an off-line 

Least-Squares method is applied to obtain the optimal estimate of parameters. Also 

obtained during each trial is the output tracking error signal. This error signal and the 

estimated model are used by the stable inverse system to learn the optimal input signal 

for the next trial. Although the estimated model may be nonminimum phase which 
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normally leads to unbounded inverse solutions, stable inversion guarantees a unique and 

bounded inverse solution. This "learning" action is done "off-line" between two consecu­

tive trials. Afterwards, the new feed forward input is used by the adaptive backstepping 

feedback controller to stabilize the system and to ensure regulation of the tracking er­

ror. The controller is designed following a recursive backstepping procedure and it takes 

advantage of the parametric strict-feedback structure of the system. The controller pa­

rameters are also continuously updated in real-time using an adaptive control law. The 

same feedback control algorithm is used during every trial. In the following, we give the 

implementation of the adaptive learning algorithm for continuous-time systems. 

3.3.1 Solution to Stable Inversion of nonminimum Phase Systems 

Consider a LTI system in the form: 

^ I x — Ax + Bu 

 ̂ ( ?/ = 

Suppose an estimated model G is obtained. If it is minimum phase, one can obtain 

the desired feed forward input by 

(3.4) 

However, if G is nonminimum phase, this will lead to unbounded solutions. The 

stable inversion theory [4] provides an avenue to overcome this difficulty. It was shown 

that under certain conditions, there exists a unique stable inverse system H of G such 

that the inverse solution Hyd is bounded and it reproduces yd exactly when applied as 

an input to G, that is, 

G(#?/d) =?/d (3.5) 

Here, the procedure to obtain this unique stable inverse solution ud  = Hyd is illus­

trated. There are four steps: 

(1) Find the time-domain state space model of G : 
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Since Gud = GHyd = yd, a state-space representation of G yields 

= Az^(t) + Bw^(f) (3.6) 

%(() = C^(t) + D^(() (3.7) 

where xd is the state and Â, B, C, and D are matrices with suitable sizes. 

(2) Find its inverse in state space: 

Differentiate yd(t) until ud appears explicitly in the right hand side. Solve for ud and 

substitute it into (3.6) and (3.7) to obtain 

xd(t) = Axd{t) + By^\t) (3.8) 

w^(t) = C^(() + D^(t) (3.9) 

where A, B, C, and D are defined according to the substitution. 

(3) Decompose the inverse system into center, stable, and unstable subsystems: 

Perform a change of variables so that 

= = (3.10) 

which leads to 

= AV + (3.11) 

z* = A'z* + B'2/M (3.12) 

z" = A"z" + (3 13) 

= [je (7' z* + (3.14) 

where Ac, As, and A" are real Jordan matrices of suitable dimensions; Ac has r eigen­

values at zero; As has all eigenvalues in the open left-half plane; A" has all eigenvalues 

in the open right-half plane. 

(4) Obtain the stable inverse system: 

Pick the transformation matrix P so that the center subsystem is a simple chain of r 

integrators. Solve that and impose two boundary conditions on the stable and unstable 
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subsystems to yield 

= b/d,Z/d,"' 'Z/d'" 

z" = A'z" + B^,( > 0; Z*(z) =0, V f < 0 

z" = A"z" + < 71. = v ; > y 

(3.15) 

(3.16) 

(3.17) 

These together with (3.10) and (3.14) define the desired stable inverse system. 

In classical inversion, (3.8) and (3.9) are treated as a dynamic system. Since it is 

unstable for a nonminimum phase system, it leads to unbounded solutions for ud. In 

contrast, the stable inverse system always yields bounded solutions for bounded and 

smooth yd- This can be clearly seen from (3.15)-(3.17) since the center solution zc is 

clearly bounded, the stable subsystem is in the forward time, and the unstable subsystem 

is in the reverse time, all leading to bounded solutions. 

When the system is minimum phase, there will be no unstable subsystem. And 

the dimension of zu and those of the associated matrices will be zero. Therefore, the 

proposed approach also applies to minimum phase systems. 

In this paper, we only consider LTI systems in this form: 

Based on the stable solutions outline presented above, to facilitate iterative learning, 

we modify the inversion process slightly as follows. Referring to Figure 1, let G denote 

the system operator from uk to yk. Let uk+1 be the new input for the next trial. Then 

the new tracking error signal will be 

%i—i,k — i — 2,3, • • • , n 

Vk — Cxk  

Cfc+1 = Vd — Gu k +1 

= yd, — G(uk+1 + ûfc+i) 

= ek  — G(ud
+1 — uk) — G{uk+1 — ùk) 

Then we get 

efc+i + G(ûk+1 — ùk) — ek  — Guk+1 
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where = -%%. 

The goal of designing a learning control law is to make e&+i(-) gradually decrease 

as k increases. For any remaining errors, the feedback control action will try to reduce 

them. Therefore, we simply set e&+i = 0 and — uk = 0 to design uc
k+1. That is, we 

want 

et = (3.18) 

Since G is unknown and G k  is the best estimate model after the k t h  trial, we will use 

?4+l = (3.19) 

3&+1 = ^ = (3.20) 

so that ek = Gkue
k+1. Then our learning algorithm would be 

uk+l =  uk + uk+1 (3-21)  

Xk+1 =  Xk + Xk+1 (3.22) 

As a further modification, one may introduce a forgetting factor a (0 < a < 1) and use: 

uk+1 =  uk 0 i uk+1 (3.23) 

Xk+1 =  Xk + a xk+1 (3.24) 

where ue
k+l and xe

k+1 are given by (3.19) and (3.20), which are the stable inverse solutions 

f rom e k  and G k .  (Note  tha t :  in  the  res t  of  the  paper ,  u d ,  x d ,  and u e  represent  u k + 1 ,  x f + 1 ,  

and ue
k+1 respectively for notational convenience). 

However, the controller design in the next subsection will still assume a = 1 so that 

ud, xd, and yd satisfy the dynamics of Gk, that is : 

< 
3 

X j _ i  —  X j ]  i  — 2, • • • , n  

Ud — G kX 
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3.3.2 Adaptive Backstepping Controller Design 

There are a lot of methods to design a controller. Since the parameters of the 

systems are unknown, we need to design an adaptive controller. Here we follow a popular 

approach of adaptive backstepping design [8]. 

Define xk  = xk  — xd  and = uk  — ud .  For clarity, we will drop the subscript k in 

sections 3.2 and 3.3 if it does not cause confusion. One can easily verify: 

£ .  
: 

4 

= % % = 2, - -

xn  = xT a + [o — â]Txd  + û 

The goal is to design u to guarantee the regulation of x. Since a is unknown, let i3(t) 

be the on-line estimate of a and rewrite the last equation as follows: 

xn  = xTd + [tf — à\Txd  + û + [a — ^]T(x + xd) 

= ^(3)0 + «2 

where a = a — $,  ̂ T(x) = xT .  Then is in a standard form with matching condition, 

then the goal becomes designing «2 to guarantee the regulation of x. Details of the 

derivations are skipped here, but the final controller is given by: 

u = ud  + Û2 — xTrd — [$ — a\Txd  (3.25) 

% = a»(î,i9) (3.26) 

i) = (3.27) 

where F is an adaptation gain matrix. The variables Zi and the stabilizing functions 

CKj, i = 1,.. ., n, are defined by the following recursive expressions: 

% = Zj - a(_i(&i,..., %i_i) (3.28) 

-1 
i—1 

oli — Zi %i—i 4" ^ ^ ^ — 1, ' ' ' , % 1 (3.29) 
j=1 3  

71 — 1 

Oi n  = cnzn  — zn-1  —  tpT,d +  ~~q ^.— ( 3 . 3 0 )  
j=i 0 

This adaptive controller guarantees global boundedness of x{t),d(t), and regulation of 

Xi(t),i — 1,..., n, i.e., Xi(t) 0, as t —> 00. 
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3.3.3 Parameter Estimator 

An off-line Least-Squares method is used to estimate the parameters. To get â&+i, 

we use the method as follows: 

&k+i = + (1 (3.31) 

where 6 [0,1) is a memory factor and ak  is determined by using an off-line Least-

Squares method [6]using data from the kth trial. First using a filter for the last equation 

of Zs, we get 

1 

5 + A 

1 

xn  — 
1 rp 1  

s + A 
-u = 

5 + A 

1 

5 + A 

5 + A 
u 

& n ~ l  + A 

(3.32) 

(3.33) 

where A > 0. Then we have Z — WTâ\, where Z = (xn  — ~^u), and WT = j^xT .  

By solving the ordinary differential equations (ODE), we get Z and W. Now collect 

all the data of Z and W. Suppose there are totally M samples for the kth trial. Let 

$ = [M^f, • • • , Wlj\T and the regressor vector be Î* = [Z1; • • • , ZM]T• The Least-Squares 

solution is 

= ($?#)-!$?* (3.34) 

From this we get %. Then ô^+i is obtained by (31). Similarly, for the linear model, 

2/ = Cz (3.35) 

We can use the same argument to get the estimates of C, except that no filtering is 

needed. 

3.3.4 Adaptive Learning Algorithm 

The process of the algorithm is as follows: 
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Step 0 : Given e, the initial conditions â0 ,  Co, the initial input u^{t) = 0, and initial 

state trajectory xdit) = 0 on t € [0,T], set k=0. 

Step 1: Let ek(t) = yd{t) — y kit)- Get Gk  from âk  and Cic. Use stable inversion to get 

uî+i =  HkSk and xk+1 .  Use equation (23) and (24) to get uk+1  and xk+l .  

Step 2: uf+1(t) is used as feed forward by the adaptive backstepping feedback con­

troller to stabilize the system and to ensure regulation of xk+1(t), i .e.,  xk(t) —> xk+1(t), 

as t —• oo. The input and output trajectories are recorded respectively. 

Step 3 : Then the tracking error signal ek+i(t) is calculated. If ||efc+i(-)| |oo  < e, stops. 

Otherwise, set k = k + 1, and go to Step 4 . 

Step 4: Use off-line Least-Squares method to obtain the parameter estimates âk  and 

Ck, and go back to Step 1. 

3.4 Simulation Illustrations 

Simulation results are provided for SISO linear nonminimum phase systems with 

unknown parameters. Two examples of second order and third order unstable nonmin­

imum phase systems are included to verify the effectiveness of the proposed adaptive 

learning algorithm. 

Example 1 Consider a nonminimum phase plant: 

< $2 = [3 7]x + u 

y = [10 -  l]x 

The parameters a = [3 7]r, C = [10 — 1]. This system has two poles at 7.4051, 

-0.4051, and one zero at 10. Take the initial conditions ô0 = [2.8 6.8]T, (% = [9 — 0.8]. 

Let the desired trajectories ya{t) = 4.6685 — 0.4244cos(1.5708£) — 4.2441cos(0.1571i) as 

shown by the solid curve in Figure 2. Take an initial input u^t) = 0 and initial state 

trajectory x^(t) = 0. Simulation results for the trial k = 1 and k = 2 are shown in 

Figure 3.2. At the 2nd trial, the output y2 it) converges to the desired y dit) exactly by 

the dotted curve. Table 3.1 shows the parameter estimates and the infinity norm of the 



www.manaraa.com

46 

Table 3.1 Parameter estimates and output tracking error in each trial for 
the 2nd order nonminimum phase system 

k ôo,t(3) «i/n Co,,(10) Ci,fe(—i) | |efc | |oo 

1 2.8999 6.9235 9.9999 -1.0000 0.1021 
2 2.9339 6.9636 10.0000 -0.9999 0.0003 
3 2.9510 6.9837 10.0000 -1.0000 0.0002 
4 2.9609 6.9980 10.0000 -1.0000 0.0001 

Table 3.2 Parameter estimates and output tracking error in each trial for 
3rd order nonminimum phase systems 

k &i,t(2) &2, t (3) Co,/s(—21) Ci,t(-4) C2,t(l) l |efc(') | |oo 

k—1 0.8998 1.8982 2.9059 -21.0000 -4.0000 0.9999 0.1678 
k=2 0.9332 1.9360 2.9391 -21.0000 -4.0000 1.0000 0.0007 
k=3 0.9500 1.9541 2.9581 -21.0000 -3.9999 1.0000 0.0004 
k=4 0.9600 1.9648 2.9671 -20.9999 -3.9999 1.0000 0.0002 

output tracking error at each trial. We can see the estimated parameters are very close 

to the true values at the 3rd trial. 

Example 2 Consider a nonminimum phase plant: 

±1 = 3% 

3:2 = %3 
< 

x3  = [1 2 3]x + u 

y = [-21 -4 l]x 

The parameters a = [1 2 3]T ,C = [—21 — 4 1]. This system has poles at 

—0.3137 ± 0.4211%, and 3.6274, and zeros at 7 and -3. Take initial conditions â0 = 

[0.8 1.8 2.8]T, Co = [—25 — 3 2]. Let the desired output yd(t) = —0.2759 — 

0.0424cos(1.5708/:) — 0.2122cos(0.3142t) — 0.1061cos(0.6283t) as shown by the solid curve 

in Figure 3. Take an initial input tig(t) = 0 and initial state trajectory xd(t) = 0. Simu­

lation results for the trial k = 1 and k = 2 are shown in Figure 3.3. At the 2nd trial, the 

output 1/2 (t) converges to the desired y dit) exactly as shown the dotted curve. Table 3.2 
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Figure 3.2 Tracking of 2nd order linear nonminimum phase systems (3/2( t )  

converges to y dit) exactly) 
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shows the parameter estimates and the infinity norm of the output tracking error at 

each trial. We can see that the estimated parameters are very close to the true values 

at the 4th trial. 

The above results demonstrate that the proposed learning control is very effective in 

reproducing the desired trajectories. 

3.5 Conclusions 

A new adaptive learning algorithm has been developed for unstable nonminimum 

systems. The adaptive backstepping feedback control law is employed to guarantee 

regulation of tracking error and a stable inverse system is used to update the feed forward 

input for the next trial. Given a desired trajectory, the learning controller is able to learn 

and eventually drive the closed loop dynamics to track the desired trajectory. Simulation 

results demonstrate the effectiveness of the proposed method. 



www.manaraa.com

50 

Bibliography 

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, "Bettering Operation of Robots by 

Learning," Journal of Robotic Systems, Vol. 1, pp. 123-140, 1984. 

[2] P. Bondi, G. Casalino, and L. Gambardellal, "On the Iterative Learning Control 

Theory for Robotic Manipulators," IEEE Transactions on Robotics and, Automation, 

Vol. 4, pp. 14-22, 1989. 

[3] J. Gao and D. Chen, "Iterative Learning Control for Nonminimum Phase Systems," 

America,n Control Conference, 1998. 

[4] D. Chen and B. Paden, "Stable Inversion of Nonminimum Phase Nonlinear Systems," 

International Journal of Control, Vol. 64, pp. 81-96, 1996. 

[5] J. Hauser, "Learning Control for a Class Nonlinear Systems," Proceedings of the 26th 

Conference on Decision and Control, pp. 859-860, 1987. 

[6] R. Johansson, System Modelling Identification, Prentice Hall, Englewood Cliffs, New 

Jersey, 1993. 

[7] S. Kawamura, F. Miyazaki, and S. Arimoto, "Application of Learning Method for 

Dynamic Control of Robot Manipulations," Proceedings of the 24-th, Conference on 

Decision and Control, 1381-1386, 1985. 

[8] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control 

Design, Wiley, New York, 1995. 

[9] K. Moore, Iterative Learning Control for Deterministic Systems, Springer-Verlag, 

New York, 1993. 



www.manaraa.com

51 

[10] K. Moore, M. Daleh, and S. Bhattacharya, "Iterative Learning Control: A Survey 

and New Results," Journal of Robotic Systems, Vol. 9, pp. 563-594, 1992. 



www.manaraa.com

52 

4 Robust Inversion-based Learning Control for Nonminimum 

Phase Systems 

Abstract — This paper introduces a new robust inversion-based learning algorithm 

for the repetitive tracking control of a class of unstable nonminimum phase systems. 

After each repetitive trial, the Least-Squares method is used to estimate the system pa­

rameters. The output tracking error and the identified system model are used through 

stable inversion to find the feed forward input, together with the desired state trajecto­

ries, for the next trial. A robust controller is used in each trial to ensure the stability of 

the systems and the output tracking error convergence. Sufficient conditions for learning 

control convergence are provided. Simulation studies on the systems with gain uncer­

tainty and time constant uncertainty are also presented. In addition, simulation results 

demonstrate that the proposed learning control scheme is very effective in reproducing 

the desired trajectories. 

4.1 Introduction 

Iterative learning control (ILC) is a feed forward control approach aimed at achieving 

high performance output tracking control by "learning" from past experience so as to 

eliminate the repetitive errors from future execution [4], This approach was motivated 

by the observation that humans are able to improve their performance through repeated 

practice. 

The concept of iterative learning for generating the optimal input to a system was 

first introduced by Uchiyama [1] to improve the performance of robot motion. Later 

the idea was developed by a research group headed by Suguru Arimoto. He and his 
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Figure 4.1 Learning control system 

colleagues began publishing their work for repetitive robot control [5, 6], which led to 

increased interest in LLC, particularly through the middle to late 1980's. The work was 

based on using repeated trials to track a desired trajectory. 

The basic idea of the approach is illustrated by Figure 4.1. During each trial, the sys­

tem input and output signals are stored. The learning control algorithm then evaluates 

the performance error. Based on the error signal, the learning controller computes a new 

input signal, which is stored for use during the next trial. The new input is chosen such 

that the performance error will be reduced in the next trial. The "learning" action is 

done "off-line" between two consecutive trials and uses the entire error history from the 

previous trial to modify the entire input signal for the next trial. One of the important 

features of ILC is that it requires little a priori knowledge about the controlled system 

during the controller design phase. More importantly, the learning process provides a 

system with the ability to "learn" to improve its performance. 

For linear systems, Arimoto et al. [5] first proposed a learning control method for 

linear time-varying, continuous-time systems. It assumes that the system relative degree 

is one. It was shown that tjk will eventually match % exactly as the number of trials 

increases under certain conditions. This algorithm is called a D-type algorithm since the 

derivative of the output error is used to update the next input. Arimoto [6] modified 

the above algorithm and considered P-type and PD-type learning controllers. Moore 
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[4] modified the Arimoto method and extended it to systems with relative degree larger 

than one. Furuta and Yamakita [7] presented a modification of Moore's method. A 

proportional (P) learning algorithm was used, with respect to a specific function of 

output error instead of with simple output error. Their algorithm provided convergence 

in the sense of the La norm but required the complete knowledge of the adjoint system, 

which is equivalent to needing the complete knowledge of the system dynamics. 

Hauser presented a nonlinear version of Arimoto's method for a class of nonlinear 

systems [19] and provided sufficient conditions for its uniform convergence. Hauser's 

method is more general than Arimoto's method. For a more specific structure, Sugie 

and Ono [8] provided the learning controller given by a linear time-varying system and 

showed its convergence under some conditions. Kuc et al. [9] presented an ILC scheme 

for a class of nonlinear dynamic systems. They suggested an ILC scheme with high-

gain feedback PD controller, which updated the feed forward control input with the 

feedback controller output. Saab [13] presented sufficient conditions for the convergence 

of a P-type learning algorithm for a class of time-varying, nonlinear systems. Jang et al. 

[10] proposed an ILC method to achieve precise tracking control of a class of nonlinear 

systems. The learning was done in a feedback configuration and the learning law updated 

the feedforward input from the plant input of the previous trial. It was shown that the 

feedback controller had no effect on the convergence condition of the learning control 

while it could significantly improve the performance of learning. Comprehensive analysis, 

design, and applications of ILC could be found from [4, 11, 12]. 

Although existing learning algorithms have been theoretically proven to provide out­

put error convergence with successful applications, many such algorithms have practical 

difficulties with nonminimum phase systems. Amann and Owens [2] showed that a zero 

of the plant in the RHP caused very slow convergence of the input sequence and resulted 

in a nonzero error for some iterative control algorithms. Gao and Chen [14] illustrated 

with counter-examples the limitations of some of the existing learning algorithms with 

regard to nonminimum phase systems. To remove the minimum phase requirement, they 

developed a new adaptive learning algorithm for stable linear systems based on "stable 
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inversion". Based on the algorithm of Gao and Chen, Ghosh and Paden [15, 16] devel­

oped an ILC algorithm for nonlinear nonminimum phase plants with input disturbances 

and output sensor noise. An extension to the ILC algorithm in [15, 16] was presented [17] 

so that it could be applied to a nonminimum phase plant with neglected and unmodeled 

dynamics. All the algorithms developed by Ghosh and Paden assume that the plants 

are stable and assume the system parameter are known. Wang and Chen [21] presented 

an adaptive learning control algorithm for unstable nonminimum phase systems. In this 

paper, a robust learning algorithm that can guarantee the learning control convergence 

is developed to work for unstable nonminimum phase systems. Simulation studies are 

presented to show the effectiveness of the proposed robust learning algorithm. 

The remainder of this paper is organized as follows: In the next section, a class of 

desired trajectories under consideration is defined and the problem of ILC is stated. 

The learning control convergence issue is also addressed. Section 4.3 presents the new 

robust learning control law and a sufficient condition for the convergence property of the 

proposed ILC. Section 4.4 applies the proposed robust ILC to linear systems with gain 

uncertainty and time constant uncertainty. Section 4.5 shows the simulation results for 

these two types of linear systems. Finally, some conclusions are given in Section 4.6. 

4.2 Framework and Problem Statement 

Consider a nonlinear time varying plant model in the k t h  trial: 

3/&W = %t(Z)) (4-1) 

where, for all t G [0, T], xk(t) G $?", uk{t) G $?m, yk(t) G And 6 is a parameter vector. 

In addition, we make the following assumptions: 

(Al) The system has a well-defined relative degree r = (r\, • • • ,  rm)T that is known. 

The hnearization of the system about an equilibrium point, which is assumed to be the 

origin WLOG, is completely controllable. 

(A2) The order of the system, n, is known. 

(A3) The system parameter vector 6 is unknown or known incompletely. 
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(A4) A desired output trajectory is given and is a sufficiently smooth function of t 

satisfying yd(t) — 0 for any t G (—oo,0] U [T, oo) and finite for any t G (0, T), where 

T > 0. 

(A5) The system can be represented in terms of control input uk(-) and output yk{-) 

in the kth trial by means of a nonlinear time-varying operator <i> as follows: 

!/k(') = ${%&(')} (4.2) 

The operator ${•} is uniformly globally Lipschitz in uk  on the interval [0, T], That is, 

||§uk - 5>ufc+i|| < L\\uk{t) — ufc+i(i)||, Vt G [0,T] with a Lipschitz constant 0 < L < oo. 

Iterative Learning Control Problems : 

Given a desired output trajectory yd(t) and a tolerance error bound e for a class of 

system (1) and (2), starting from an arbitrary continuous initial control input Uq(-) and 

initial state $•(•), iterative learning control will try to find a sequence of desired state 

trajectories xf(-) and desired control inputs uf(-), which when applied to the system, 

produces an output sequence yk(-) such that 

(1) ||yd{-) — y/o(')||oo < e, as k oo, where k is the trial number and ||/||oo = 

SUPte[0,T]ll/(t)ll-

(2) ll^kWII ^ IkkWII < G (-00,0] U [T,+oo). 

(3) uf(i), xk(t), uk(t), and xk(t) are uniformly bounded. 

In this dynamic process, the functions have two arguments: continuous time t and 

the trial number k. In the sequel, it is assumed that the variation of the operator over 

two consecutive trials is slow and can be neglected. Then the operator obtained by 

the identification performed in the kth trial can be used to determine the input for the 

(k + l)th trial. This general description of the problem allows a simultaneous description 

of linear or nonlinear dynamics, continuous or discrete plant, and time-invariant or time-

varying systems. 

When applying a linear ILC, however, the plant must fulfill the following conditions: 

(1) The desired trajectory yd(t) is identical for every trial and satisfies Assumption (A4). 

(2) Each trial has the fixed period T. (3) The system parameters are fixed or very slowly 

time-varying. 
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Figure 4.2 Block diagram of inversion-based learning control system 

At any trial k, define a tracking error to be = Ud — Uk• Learning control convergence 

means that ||e&|| —> 0 as k —» oo. The A-norm defined in Arimoto et al. [5] has been 

adopted in many papers [4] as the topological measure in the proof of the convergence 

property for a newly proposed ILC. The formal definition [5] of the A-norm for a function 

/ : [0, T] —> 5in is given by 

ll/( )llA = sup (4.3) 
te[o,T] 

It is easily observed that ||/||A  < | | / | | oo  < eAT||/||A for A > 0, where \\fl\oo = 

sup | |/(t)||oo, implying the A—norm is equivalent to the sup norm. 

4.3 Inversion-Based Learning Controller Design 

In Section 4.2, we have given the general setup for learning control. In this section, 

a robust learning controller will be presented. The block diagram of the robust learning 

system is shown in Figure 4.2. 

The proposed robust learning control strategy has three components: a parameter 
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estimator, a stable inverse system, and a robust feedback controller. The parameter 

estimator is in charge of "learning" the parameterized model of the system. During each 

trial, the input and output trajectories are recorded. Then an off-line Least-Squares 

method [20] is applied to obtain the optimal estimate of parameters. Also obtained 

during each trial is the output tracking error signal. This error signal and the estimated 

model are used by the stable inverse system to learn the optimal input signal for the 

next trial. Although the estimated model may be nonminimum phase which normally 

leads to unbounded inverse solutions, stable inversion guarantees a unique and bounded 

inverse solution. This "learning" action is done "off-line" between two consecutive trials. 

Afterwards, the new feed forward input is used by a feedback controller to stabilize 

the system and to ensure regulation of the tracking error. The same feedback control 

algorithm is used during every trial. 

In the following, sufficient conditions of learning convergence for linear systems are to 

be addressed. The stable inversion solution to nonminimum phase systems is provided 

as well. 

4.3.1 Sufficient condition of learning convergence for linear systems 

One of the advantages for linear systems is that one can obtain an explicit relation 

between ||e&+i||oc and ||e&||oo-

For LTI systems, the learning control update law is chosen as 

uk+1 = uk Hkek 

where Hk is a linear operator. 

A fixed controller K could be chosen. Thus, the output tracking error is described 

as follows: 

efc+i = Ud — Vk+i 

= Cfc + Guk  — Guk+1 
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Since uk  = ùk  + uk  and uk  = Kek ,  we have 

e/c+i = efc + G(ûfc + ud) — G(ûfc+i + uk+l) 

= ek  — G(uf+1 — uf) + G(ûk  — Mfc+i) 

= e/b — GHkek  + G{Kek  — Kek+i 

= (/ — GHk)ek  + G(Kek  — ifefc+i) 

= (J + GK — GHk)ek  — GKek+\ 

it yields 

et+i = (/ + G#) -i (/ + G# -

Furthermore, taking the norms yields 

||cfc+i||oo = ||^ ~~ + GK) 1Giïfc)||00||efc||00 

Then the sufficient condition for learning convergence is 

||/ - (7 + < p < 1 (4.4) 

with p G (0,1). 

There are several options for choosing Hk  and controller if. Among these options, 

Hk can be selected as the stable inverse of (/ + GkK)~lGk, where Gk is the estimated 

model of the system for trial k and K can be chosen as a robust controller if the systems 

have some uncertainties. 

In the following section, a solution to stable inversion of linear nonminimum phase 

systems is presented. 

4.3.2 Solution to stable inversion of nonminimum phase systems 

Consider a LTI system in the form: 

^ I x = Ax + Bu 
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If G is nonminimum phase, this will lead to unbounded solutions. The stable inver­

sion theory [18] provides an avenue to overcome this difficulty. The procedure to obtain 

a unique stable inverse solution ud = Hyd is illustrated below. There are four steps: 

(1) Find the time-domain state-space model of G : 

Since Gud  = GHyd  = yd, a state-space representation of G yields 

^(t) = + (4.5) 

2/d(f) = Ca^(() + D?/(t) (4.6) 

where xd is the state and A, B, C, and D are matrices with suitable sizes. 

(2) Find its inverse in state space: 

Differentiate yd(t) until ud  appears explicitly in the right hand side. Solve for ud  and 

substitute into (4.5) and (4.6) to obtain 

a^(Z) = Âc^) + %y)(f) (4.7) 

%% = C^(f) + A/W(f) (4.8) 

where A, B, C, and D are defined according to the substitution. 

(3) Decompose the inverse system into center, stable, and unstable subsystems: 

Perform a change of variables so that 

which leads to 

= = (4.9) 

z= = A'z' + B^ (4.10) 

z* = A*z' + B*z/^ (4.11) 

z" = A"z" + B"^ (4.12) 

^ = [C C"][z^ z^ z"r + D^ (4.13) u 

where Ac, As, and A" are real Jordan matrices of suitable dimensions; Ac has r eigen­

values at zero; As has all eigenvalues in the open left-half plane; Au has all eigenvalues 

in the open right-half plane. 
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(4) Obtain the stable inverse system: 

Pick the transformation matrix P so that the center subsystem is a simple chain of r 

integrators. Solve that and impose two boundary conditions on the stable and unstable 

subsystems to yield 

(4-14) 

z* = A^ + B^,f>0;z'(Z) = 0, VZ<0 (4.15) 

z" = f < T; z"(f) = 0, V t > T (4.16) 

These together with (4.9) and (4.13) define the desired stable inverse system. 

The stable inverse system always yields bounded solutions for bounded and smooth 

yd- This can be clearly seen from (4.14, 4.15, 4.16) since the center solution zc is clearly 

bounded, the stable subsystem is in the forward time, and the unstable subsystem is in 

the reverse time, all leading to bounded solutions. 

4.3.3 Inversion-based learning 

Based on the stable solutions outline presented above, to facilitate iterative learning, 

the inversion process is slightly modified as follows. 

Since G is unknown and Gk  is the best estimate model after the k t h  trial, one would 

select 

ue
k+l  = Hkek  (4.17) 

= (4.i8) 

so that ek  — Gkuk+l .  Then the learning algorithm becomes 

uk+1 =  uk + Uk+1 (4.19) 

There are various methods to design the feedback controller. For systems with un­

certainties, a robust controller will be chosen to stabilize the systems. 

In the following section, the implementation of the robust learning algorithm for two 

types of LTI systems is presented. 
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4.4 Learning Control of Linear Systems with Uncerntainty 

Sufficient conditions for learning control convergence for linear systems with gain 

uncertainty and time constants uncertainty are provided in this section. 

4.4.1 Learning Control of Systems with Gain Uncertainty 

In this section, the following type of linear nonminimum phase system with gain 

uncertainty is considered. Let the set of possible plants be 

Gp(s) = kpGo(s), kmin  < kp  < kmax  

where G q ( s )  =  with z > 0, a < 0, b > 0, and b > —az. 

For the above system, the uncertainty can be expressed as the following multiplicative 

uncertainty: Gp(s) = fcp(l+rA)G0(s) |A| < 1 where kp  = and r = . 

The closed-loop transfer function is given as 

k p (s-z)  
s^+(&+/cp.RT)s+b—kpKz 

To guarantee the stability of the system, the following inequalities should be satisfied: 

> —az 

The robust controller can be chosen as 

K = ^ (4.20) 

which means 

\J—abz(l — r) > —az 

\/—abz( 1 + r) < b 

Thus, to guarantee the stability, r should satisfy 

r < min(l + ~r==, ~7== ~ x) (4.21) 
V—aoz v—ooz 

For a specific example, setting a = —1, z = 3 ,b = 12, kmin  = 0, and k,max  = 4, the 

following system is considered 

G p ( s )  =  k P s 2  _  g  _|_ i2 ' 0 < < 4 (4 22) 
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where kp  = 2.15. 

This system has a zero at 3, and has poles at 0.5 ± 3.4278%. The causal reference 

output trajectory is given by: 

f 5 — 5cos(0.4yrt), t E [0,5] 
V d =  {  

I 0, otherwise 

as shown by the solid curve in Figure 4.3. Then by (4.21), to guarantee the systems 

stability, r should satisfy r < 0.5. 

If Hk is chosen as the stable inverse of (/ + GpK^Gp, then by (4.4) and (4.20), to 

guarantee the learning convergence, the following condition should be satisfied, 

||l-(l + G^)-^Ak||co 
m -| kp[s—3) —s-\-V2.-\~Kkp{s—3) m 

Il s2-s-\-12-\-Kkp(s—3) kp(s—3) 

11 -j k p  k p  K  ( k p  k p  ) s —3 11 
kp kp —s-\-12-\-Kkp(s—3) 0 0  

< 2r + 4r(l + 

< p < 1 

Hence the range for r to guarantee the learning convergence is r G [0, 0.092], Combined 

with r < 0.5, to guarantee both the learning convergence and the stability of the system, 

r should satisfy r E [0,0.092], Thus kp E [k(l — r),k( 1 + r)], i.e., kp € [1.816,2.184], 

which means the estimated parameter kp should be restricted in the above range in order 

to guarantee the learning convergence. 

4.4.2 Learning Control of Systems with Time Constant Uncertainty 

In this section, the following single-input single-output linear nonminimum phase 

system with time constant uncertainty is considered. Let a set of plants are given by 

Gp(s) = , Tmin < Tp < Tmax 

where G0(s) — ^ with z — p > Tma*+T™™pZ > o and TM I N  > 0. For the above system, 

the uncertainty can be expressed as the following inverse multiplicative uncertainty: 
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Gp(s) — |A| < 1 where r = r"""+T"":" and r = Tm"x Tmin. The closed-loop 
' X  ' T(l+rAJ 'I — 2 Tmax+Tmi„ >• 

transfer function is given as 

T ps2+(l - T p p +K)s - p -Kz 

To guarantee the stability of the system, the following inequalities should be satisfied: 

kpALz > —az 

< 6 

The robust controller can be chosen as 

k  = _ vSEHUHi (4.23) 

Then it yields 

1 — T(1 + r)p > 0 

Thus, to guarantee the stability, r should satisfy 

r < min(^_ P — l,~r— 1) (4.24) 
TpZ Tp 

For a specific example, setting z = A,p = 1, kmin  — 0, and kmax  = 1, the following system 

is considered 

y — ^ { w ^u, 0 < TP  < 1 (4.25) 
s — 4 

('TpS + l)(s — 1) 

where rp = 0.473. This system has a zero at 4, and has poles at -2.1142 and 1. The 

causal reference output trajectory is given by: 

10 — 10cos(0.2vrt), t G [0,10] 
Dd = 

0, otherwise 

as shown by the solid curve in Figure 4.6. 

Then by (4.24), to guarantee the systems stability, r should satisfy 

r < 0.5 (4.26) 
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If Hk is chosen as the stable inverse of (I + GPK) 1GP ,  then by (4.4) and (4.23), to 

guarantee the learning convergence, the following condition should be satisfied, 

||1 — (1 + GpK) 1GpÊk ||oo 
|]i s—4 (Tps+l)(s—p)- \ -K(s—4) it 
II (rps+l)(s— p)-\-K(s—4) s—4 l'°° 
| | i  Tp Z i  Tp \  (l-\-K)s—l—4K i| 

_ II Tp V Tp > (TpS+l)(s-l) + /f(s-4) ll°° 
<2 r + 2rll (i+iC)a-i-4K n 
- + ZrH (TpS+l)(S-l)+/<(S-4) H°o 

< p < 1 

Thus the range for r to guarantee the learning convergence is r G [0, 0.273]. Combined 

with (4.26), to guarantee both the learning convergence and the stability of the system, 

r should satisfy r G [0,0.273]. Hence tp G [f(l — r), f (1 + r)], i.e., rv G [0.3635, 0.6365], 

which means the estimated parameter tp should be restricted in the above range in order 

to guarantee the learning convergence. 

4.5 Simulation results 

In this section, two specific examples (4.22) and (4.25) are simulated. Here, suppose 

only output and input signals can be measured. In addition, there is random noise on 

output measurements, which has mean 0 and deviation 0.01. 

For each of two examples, three cases are simulated. For all three cases, the least-

squares method is used to estimate the unknown parameter. For Case 1, take the initial 

condition within the range. The estimated parameter is always enforced within the range 

by projection. For Case 2, take the initial condition beyond the range. The estimated 

parameter is used without projection. For Case 3, take the initial condition beyond the 

range. The estimated parameter is always enforced outside the range. 

The initial conditions of the unknown parameters for these two examples are shown 

in the following table: 

Given an initial input Uq(£) = 0, simulation results for the trial k = 1 and k — 2 are 

shown in Figure(4.3-4.5) for Example 1 and shown in Figure(4.6-4.8) for Example 2. 

For both two examples, at the 2nd trial, the output y2(i) converges to the desired 

ijd(t) exactly shown by the dotted curve for Case 1 and Case 2. But the output y2(t) 
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Figure 4.3 Tracking of nonniinimum phase systems with gain uncertainty 
for Case 1 (y2(*) converges to yd(t) exactly) 
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Figure 4.4 Tracking of nonminimum phase systems with gain uncertainty 
for Case 2 (y2(*) converges to yd(t) exactly) 
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Output tracking 

Figure 4.5 Tracking of nonminimum phase systems with gain uncertainty 
for Case 3 (1/2 (t) converges to %(f) exactly) 

Output tracking 
120 

100 

80 

60 

40 

20 

0 

0 2 4 6 8 10 

Figure 4.6 Tracking of nonminimum phase systems with time constant un­
certainty for Case 1 (y3(t) converges to yd(t) exactly) 
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Figure 4.7 Tracking of nonminimum phase systems with time constant un­
certainty for Case 2 (y3(t) converges to yd(t) exactly) 
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Figure 4.8 Tracking of nonminimum phase systems with time constant un­
certainty for Case 3 (y^(t) converges to yd(t) exactly) 
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Table 4.1 Initial condition of the unknown parameters for two examples 

Example 1 (kp) 

Cage 1 1.98 0.6 
Case 2 6 1.5 
Case 3 6 1.5 

Table 4.2 Output tracking error of nonminimum phase systems with gain 
uncertainty 

k Case 1 Case 2 Case 3 

1 12.6169 29.4802 29.4802 
2 0.1238 0.1908 225 
3 0.1233 0.1446 1662 
4 0.1106 0.1267 12334 

diverges tremendously for Case 3. Table 4.2 and Table 4.3 shows the infinity norm of 

the output tracking error at each trial for three cases for Example 1 and Example 2 

respectively. The infinity norm of the output tracking error decreases for Case 1 and 

Case 2, while it increases largely for Case 3. 

The above results demonstrate that the proposed learning control is very effective 

in reproducing the desired trajectories. Simulation results also show that the provided 

condition is only a sufficient condition not a necessary condition. 

Table 4.3 Output tracking error of nonminimum phase systems with time 
constant uncertainty 

k Case 1 Case 2 Case 3 

1 89.5941 86.4392 86 
2 0.6494 0.6407 710 
3 0.0391 0.0260 5813 
4 0.0159 0.0173 56337 
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4.6 Conclusions 

A new inversion-based robust learning algorithm has been developed for unstable 

nonminimum phase systems. The sufficient condition for the convergence of the proposed 

ILC is also provided. The robust feedback control law is employed to guarantee the 

system stability and the convergence of tracking error, and a stable inverse system is 

used to update the feed forward input for the next trial. Simulation studies on two types 

of linear systems with gain uncertainty and time constant uncertainty are presented. 

Given a desired trajectory, the learning controller is able to learn and eventually drive 

the closed-loop dynamics to track the desired trajectory. Simulation results demonstrate 

the effectiveness of the proposed method. 
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5 Design of a CMOS Low Noise Amplifier (LNA) at 5.8 GHz 

and Its Sensitivity Analysis 

Abstract — This paper presents a 5.8 GHz low voltage and low power LNA design 

integrated in a TSMC 0.18 jum CMOS process, and its sensitivity analysis. This sensi­

tivity analysis gives a measure of the sensitivity of the LNA performance to a change 

in the circuit element values, thereby assisting the designer in choosing the adequate 

circuit element tolerances. Such sensitivity analysis of the LNA is very beneficial for 

making appropriate design trade offs. The designed LNA requires only a, 1 V supply 

voltage and consumes 4.5 mW DC power. At 5.8 GHz, this LNA has noise figure (NF) 

of 2.463 dB, with input return loss of -15.35 dB, output return loss of -16.26 dB, and 

voltage gain of 11.57 dB. 

5.1 Introduction 

The first stage of a receiver is typically a low noise amplifier (LNA), whose main 

function is to provide enough gain to overcome the noise of subsequent stages (such as 

mixer) [1]. In the literature, many LNA's are designed in GaAs and bipolar technology 

[9, 8]. As the cutoff frequency of CMOS device has increased above a few tens of GHz, 

CMOS circuits are capable of replacing GaAs/bipolar circuits in the area of a few-G Hz 

RF. Since CMOS technology has the feature of low cost, high level of integration, and 

mass productivity, it becomes very popular in RF integrated circuit design currently [7]. 

Much research has been done in the CMOS LNA area from 900 MHz to 2.4 GHz 

[5, 3, 2, 1, 4], As the demand for Radio Frequency Integrated Circuits operating at 

higher frequency bands increases, circuit design in an IEEE 802.11a standard becomes 
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Figure 5.1 Complete schematic of the 5.8 GHz LNA 

a very interesting area. However, there are fewer examples of CMOS LNA designed at 

5-6 GHz. 

In this paper, a low voltage and low power CMOS LNA at 5.8GHz is proposed. 

As a design tool, sensitivity analysis gives a measure of sensitivity of the LNA circuit 

performance to a change in the circuit element values,thereby assisting the designer in 

choosing adequate circuit-element tolerances. Such sensitivity analysis of the LNA is 

very beneficial for making appropriate design trade offs. In this paper, the sensitivity 

analysis of the proposed LNA circuit is also provided. 

The remainder of this paper is organized as follows: In the next section, a single-ended 

5.8 GHz RF CMOS LNA circuit design is proposed. Section 6.3 shows the simulation re­

sults. Section 5.4 describes the sensitivity analysis of the proposed LNA design. Finally, 

some conclusions are given in Section 6.4. 
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5.2 LNA Circuit Design 

The complete schematic of the 5.8 GHz LNA is shown in Figure 5.1, where Lg ,L s ,  

and Ld are all implemented with on-chip spiral inductors. The method employed here is 

inductive source degeneration. Cascoding transistor M2 is used to reduce the interaction 

of the tuned output with the tuned input, and to reduce the effect of the gate-drain 

capacitance Cgd of M\. The inductors Lg and Ls are chosen to provide the desired input 

resistance. Ld and the capacitance of the transistors M2 form a tank circuit to tune the 

LNA to 5.8GHz. M3,Ri, and R2 form a bias circuit. Transistor M3 essentially forms 

a current mirror with M\, where its width is a small fraction of the width of Mi's in 

order to minimize the power overhead of the bias circuit. Cin and Cout are DC blocking 

capacitors. 

Due to the limited choice of inductor and capacitor values in the technology we 

choose, the matching network becomes very challenging. With the comprehensive con­

sideration of the chip size and different performance tradeoff, and Cout play important 

roles in input and output matching respectively. The load resistor RL is tuned to man­

age the tradeoff between gain, output matching, and power dissipation of LNA. Both 

input and output are matched to 50 
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Table 5.1 Performance summary of the LNA 
Parameter Value 
Technology 0.18 yum CMOS 
Frequency 5.8 GHz 

Gain 11.57 dB 
NF 2.463 dB 
Su -15.35 dB 

-16.26 dB 
S12 -19.56 dB 

IIP3 -5.47dBm 
Supply Voltage 1 V 

Power Dissipation 4.5 mW 

Table 5.2 Comparison to other low voltage CMOS LNA's operation above 
3z 

This Work [1] 
Technology 0.18 /im CMOS 
Frequency 5.8 GHz 

Supply Voltage 1 V 
Power Dissipation 4.5 mW 22.2 mW 

Gain 11.57 dB 13.2 dB 
NF 2.463 dB 2.5 dB 
Sn -15.35 dB -5.3 dB 

%2 -16.26 dB -10.3 dB 

5.3 Simulation Results 

For the proposed single-ended LNA shown in Figure 5.1, the simulation result is 

shown in Figure 5.2-Figure 5.7. The designed LNA requires only a 1 V supply voltage 

and consumes 4.5 mW power. At 5.8 GHz, this LNA has noise figure (NF) of 2.463 dB, 

with input return loss of -15.35 dB, output return loss of -16.26 dB, and voltage gain of 

11.57 dB. This LNA performance represents high voltage gain, low supply voltage, low 

noise figure, and low power dissipation. The performance summary is listed in Table 6.1. 

Table 5.2 lists the comparison to another low voltage CMOS LNA's operation above 
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5 GHz. Note that [1] represents the experimental results. 

5.4 LNA Sensitivity Analysis 

In this section, sensitivity analysis of the proposal LNA is described. We mainly 

focus on the sensitivity analysis of gain and noise figure to the inductors. Suppose 

we are interested in the sensitivity of the gain to Lg,Ls, and Ld. We choose the same 

variation for Lg, Ls, and Ld, then we calculate AL/L, and Again/gain. Note that gain 

is in an absolute value, not in dB. 

The overall stage transconductance Gm is 

Gm = gmlQin = n T~\ (5'1) 

where 

The gain of LNA is 

Av  = GmZL .  (5.3) 

It shows that the gain is determined by transistor size, Lg ,  L s ,  and load impedance 

ZL-

The gain, noise figure, and the third order input intercept point (IIP3) variation 

versus Lg, Ls, and Ld variation are shown in Figure 5.8-Figure 5.10. 

From Figure 5.8 and Figure 5.10, we can see that both the gain and IIP3 are more 

sensitive to the change in Ld compared to Lg and Ls. They also indicate that both the 

gain and IIP3 are more sensitive to the change in L s  than Lg .  

From Figure 5.9, we can see that the noise figure is more sensitive to the change in 

Ls and Lg than Ld. And it shows that the noise figure is more sensitive to the change 

in L s  than Lg .  
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5.5 Conclusions 

This paper presents a 5.8 GHz LNA design integrated in a TSMC 0.18 /xm CMOS 

process, and its sensitivity analysis. Such sensitivity analysis of the LNA provides some 

insights of the proposed LNA design. The designed LNA requires only a 1 V supply 

voltage and consumes 4.5 mW power. At 5.8 GHz, this LNA has noise figure (NF) of 

2.463 dB, with input return loss of-15.35 dB, output return loss of-16.26 dB, and voltage 

gain of 11.57 dB. This LNA performance represents high voltage gain, low supply voltage, 

low noise figure, and low power dissipation. This LNA can be used for low voltage and 

low power wireless applications. Future work may be focused on LNA optimization 

analysis based on the results of the sensitivity analysis. 
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6 A Novel 1.5V CMFB CMOS Down-Conversion Mixer 

Design for IEEE 802.11a WLAN Systems 

Abstract— This paper presents a 5.8 GHz low voltage down-conversion mixer design 

integrated in a TSMC 0.18 jim CMOS process. The proposed method features that an 

RF input stage converts the RF input voltage to current, which is coupled to the core of 

a Gilbert Cell using a current mirror. This implementation eliminates the current source 

transistor at the bottom and furthermore reduces the supply voltage. Common-mode 

feedback is used for the active load of the mixer. The LO frequency is at 5.6 GHz. The 

designed mixer requires only a 1.5 V supply voltage and consumes 11.78 mW DC power. 

At 5.8 GHz, this mixer has a single-sideband noise figure (SSB NF) of 13.6 dB, with an 

input return loss of -18 dB, with an output return loss of -26.4 dB, a Third-order Input 

Intercept Point (IIP3) of -10.66 dBm, and conversion gain of 10.4 dB. 

6.1 Introduction 

Wireless communications research has experienced a remarkable renaissance in the 

last decade. The growing wireless LAN market has generated increasing interest in tech­

nologies that will enable higher data rates and capacity than initially deployed systems. 

The 802.11b standard at the 2.4 GHz ISM band provides data rates up to 11Mbps with 

direct sequence spread spectrum (DSSS). This technology first appeared in the market 

in 1999. The 802.11a standard, released by IEEE in 1999, is based on an orthogonal 

frequency division multiplexing (OFDM) modulation technology with data rates up to 

54 Mbps in the 5GHz band [3]. The IEEE 802.11a standard provides nearly five times 

the data rate and as much as ten times the overall system capacity as currently available 
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Figure 6.1 MOS version of Gilbert-type mixer 

802.11b wireless LAN systems [5]. Fast growth of the personal communication market 

requires low cost production and low power transceivers for wireless applications. As a 

low cost alternative, CMOS is becoming a contender for RF front-end IC applications 

[6], 

In low-volt age RF IC design, high LO drives are difficult to generate. The down-

conversion mixer translates an incoming RF signal to a lower frequency, known as the in­

termediate frequency (IF) [1]. Both in bipolar and CMOS technologies, down-conversion 

mixers have good gain and linearity [11, 12]. 

The most common mixer architecture is a Gilbert-cell [7]. The MOS version of the 

Gilbert-type mixer is shown in Figure 6.1. However, it cannot operate at near 1 V supply 

due to the stack of three saturated transistors. Thus designing a CMOS mixer that can 

operate at 5-6 GHz with low voltage becomes a challenging task. 

Among the CMOS mixer research areas, some works have been done in targeting 

low voltage mixer design. Cheng et al. designed a 1.2 V, 900 MHz CMOS mixer circuit 

using current mode multiplication method [9]. However, the conversion gain is only -9 

dB. Kathiresan et al. proposed a CMOS mixer core, operating at 1GHz, where the RF 

signal is input via the bulk [10]. But their conversion gain is only 2.09 dB. 

Due to the limitations of the existing research work, Wang et al. proposed a low-
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Figure 6.2 Complete schematic of the 5.8 GHz mixer with common mode 
feedback structure 

voltage 5.8 GHz mixer design in a TSMC 0.18 m CMOS process [2]. This paper is a 

further improvement of the design in [2], 

This paper presents a novel 1.5 V 5.8 GHz mixer design integrated in a TSMC 0.18 

m CMOS process. The remainder of this paper is organized as follows: In the next 

section, a single-ended 5.8 GHz RF CMOS mixer circuit design is proposed. Section 6.3 

shows the simulation results. Finally, some conclusions are given in Section 6.4. 

6.2 Mixer Circuit Design 

The complete schematic of the proposed 5.8 GHz mixer is shown in Figure 6.2. 

Compared to the traditional Gilbert Cell architecture, this method features that the 

PMOS transistors Ml and M2 are used for the RF input stage to convert the RF input 

voltage to current, which is coupled to the core of Gilbert Cell using current mirror 

(transistors M9 — Mw and Mn — M12). This implementation eliminates the current 

source transistor at bottom and furthermore reduces the supply voltage. 

The inductors Lx — L4 are all implemented with on-chip spiral inductors. The source 

degeneration inductors Lj and L2, combined with gate inductors L3 and L4, are for 

the input matching. The RF input is matched to 50 f2. The source degeneration struc­

ture helps to decrease the noise figure and increase the IIP3. The downside of on-chip 

matching is that it consumes a larger chip size. 



www.manaraa.com

88 

PMOS transistors M7 and M8 are the loads of the mixer. The DC current flows 

through the PMOS transistors M? and Mg. 

Compared to the design in [2], the proposed design has a common-mode feedback 

(CMFB) structure. In Figure 6.2, transistors M17 - M24 form a CMFB circuit. It fixes 

the common-mode voltage of Vo+ and Vo- around 1.1 V. Such a structure guarantees 

that there is only a V^s voltage drop from Vm which make the circuit work at a low 

voltage condition and also enlarges the output swing at the same time. 

Transistors Mi3 — Mi6 compose a source follower. The mixer IF output is taken from 

the sources of NMOS transistors Mi3 and M\5. The source follower increases the output 

driving capacity and matches the output to 50 f2 at the IF frequency. 

At the same time, it is valuable to point out that even though such PMOS pull-up 

current sources can operate with lower headroom, they may suffer from large flick noise 

[8], 

In our paper, the RF frequency is at 5.8 GHz and the LO frequency is at 5.6 GHz. The 

IF Frequency is at 200 MHz. The flicker noise is relatively low at 200 MHz. Therefore, 

such a structure doesn't affect the noise figure performance. However, for a low IF 

application, flicker noise may come into the picture. Based on the corresponding noise 

figure requirements, the proposed structure may need to be adjusted. 

6.3 Simulation Results 

The proposed mixer shown in Figure 6.2 is simulated in a TSMC 0.18 /im CMOS 

process using a Cadence 446 Specture-RF simulator. The simulation results are shown 

in Figure 6.3-Figure 6.7. The designed mixer requires only a 1.5 V supply voltage and 

consumes 11.78 mW power. At 5.8 GHz, this mixer has a single-side band noise figure 

(SSB NF) of 13.6 dB, with an input return loss of -18 dB, an IIP3 of -10.66 dBm, and 

a conversion gain of 10.4 dB. The performance summary is listed in Table 6.1. 
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Table 6.1 Performance summary of the mixer 
Parameter Value 
Technology 0.18 fim CMOS 

Supply Voltage 1.5 V 
Power Dissipation 11.78 mW 

RF Frequency 5.8 GHz 
LO Frequency 5.6 GHz 
IF Frequency 200 MHz 

Conversion Gain 10.4 dB 
SSB Noise Figure 13.6 dB 

IIP3 -10.66 dBm 
Su -18 dB 
S22 -26.4 dB 

6.4 Conclusions 

This paper has described a low-volt age 5.8 GHz mixer design integrated in a TSMC 

0.18 /im CMOS process. The proposed method features an RF input stage that converts 

the RF input voltage to current, which is coupled to the core of Gilbert Cell using a 

current mirror. This implementation eliminates the current source transistor at the 

bottom and furthermore reduces the supply voltage. Common-mode feedback is used 

for the active load of the mixer. The designed mixer requires only a 1.5 V supply voltage 

and consumes 11.78 mW power. At 5.8 GHz, this mixer has noise figure (NF) of 14.3 

dB, with an input return loss of -18 dB, with an output return loss of -26.4 dB, an 

IIP3 of -10.66 dBm, and a conversion gain of 10.4 dB. This mixer can be used for low 

voltage and low power wireless applications. For future research, sensitivity analysis 

optimization of the proposed mixer will be interesting to study. 
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7 CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

This thesis is composed of two parts. The first part of the thesis has addressed 

the inversion-based output tracking control and learning control for nonminimum phase 

systems, which contained chapter 2 to chapter 4. The second part of the thesis has 

presented low voltage and low power RF CMOS LNA and mixer design, which included 

chapter 5 and chapter 6. 

In Chapter 2, we have introduced a new procedure for designing a nonminimum 

phase output tracking controller driven by a causal reference profile. In this approach, 

the nonminimum phase system is first stably inverted on-line to obtain both desired (and 

stable) state and input trajectories. Then an H00 optimal controller is used to stabilize 

the closed-loop system. We provide a causal inversion solution for general nonlinear 

systems. By using the scaling property, we present a causal inversion solution such that 

the causal state and input trajectories track those obtained by stable inversion approach 

for linear systems. This new controller has achieved stable e—tracking. In contrast 

to stable inversion, the causal inversion approach does not require precalculation. In 

contrast to nonlinear regulation, the causal inversion approach avoids the numerical 

intractability of solving nonlinear PDEs. This causal inversion-based controller has been 

applied to a tip trajectory tracking of a one-link flexible manipulator. Simulation results 

demonstrate that the causal inversion approach is very effective for obtaining output 

tracking for flexible manipulators. This new approach has many important engineering 

applications such as in rocket tracking and aircraft altitude control problems. 

In Chapter 3, a new adaptive learning algorithm has been developed for unstable 
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nonminimum systems. The adaptive backstepping feedback control law is employed to 

guarantee regulation of tracking error and a stable inverse system is used to update the 

feed forward input for the next trial. We have shown that, given a desired trajectory, 

the learning controller is able to learn and eventually drive the closed loop dynamics to 

track the desired trajectory. 

In Chapter 4, a sufficient condition for the convergence of the proposed inversion-

based robust learning algorithm has been provided. We have shown that simulation 

studies on two types of linear systems with gain uncertainty and time constant uncer­

tainty are presented. The simulation results have demonstrated the effectiveness of the 

proposed method. 

Chapter 5 presented a 5.8 GHz LNA design integrated in a TSMC 0.18 /im CMOS 

process and its sensitivity analysis. This LNA performance has represented high voltage 

gain, low supply voltage, low noise figure, and low power dissipation. 

Finally, Chapter 6 has described a novel low-voltage 5.8 GHz mixer design with a 

common-mode feedback structure. It has been integrated in a TSMC 0.18 fim CMOS 

process. The performance of the designed mixer has been discussed. 

Both LNA and mixer design approaches can be used for low voltage and low power 

wireless applications. 

7.2 Future Research 

Future research issues related to the area addressed in this thesis may include the 

following: 

1. Reference output trajectories. Can the causal inversion approach allow more gen­

eral reference output trajectories? 

2. Convergence condition. What is the convergence condition for the inversion-based 

adaptive learning algorithm? 

3. Nonlinear systems. How to extend the inversion-based robust learning algorithm 

to nonlinear systems? 
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4. Optimization study. How to do an optimization design for a LNA? Can the results 

of the sensitivity analysis help in the LNA optimization design? 

5. Challenges for low voltage RF CMOS receiver design. What are the structures for 

other blocks in a low voltage RF CMOS receiver, such as a voltage gain amplifier 

(VGA), voltage controlled oscillator (VCO), and a high gain op amp? 
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